1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
|
/*
padsynt_gen.cpp:
Copyright (C) 2015 Michael Gogins after Nasca O Paul
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
extern "C" {
#include "csdl.h"
}
#include <cmath>
#include <complex>
#include <random>
/**
Paul Octavian Nasca's "padsynth algorithm" adds bandwidth to each partial of a
periodic weaveform. This bandwidth is heard as color, movement, and additional
richness of sound.
First, the waveform is defined by the user as a series of harmonic partials.
Then, bandwidth is added by independently spreading each partial of the
original waveform from a single frequency across neighboring frequencies,
according to a "profile" function: a Gaussian curve, a square, or a rising
and then falling expontential.
The partials of the original waveform may be considered to be samples in a
discrete Fourier transform of the waveform. Normally there is not an exact
one-to-one correspondence between the frequencies of the samples (frequency
bins) of the discrete Fourier transform with the frequencies of the partials
of the original waveform, because any frequency in the inverse of the discrete
Fourier transform might be synthesized by interference between any number of
bins. However, the padsynth algorithm uses a simple trick to create this
correspondence. The discrete Fourier transform is simply made so large that
the frequency of any partial of the original waveform will be very close to
the frequency of the corresponding bin in the Fourier transform. Once this
correspondence has been created, the bandwidth profile can be applied by
centering it over the frequency bin of the original partial, scaling the
profile by the bandwidth, and simply multiplying the original partial by each
sample of the profile and adding the product to the corresponding bin of the
Fourier transform.
As the frequencies of the partials increase, their bandwidth may optionally
become wider or (less often) narrower.
Once each partial has been spread out in this way, the discrete Fourier
transform may be given random phases, and is then simply inverted to
synthesize the desired waveform, which may be used as the wavetable for
a digital oscillator.
N.B.: The size of the function table does NOT necessarily reflect one periodic
cycle of the waveform that it contains. The fundamental frequency must be used
to generate the desired pitch from an oscillator using the function table, e.g.
oscillator_hz = desired_hz * (sr / padsynth_size / fundamental_hz)
The parameters of the function table statement are:
p1 "padsynth"
p2 Score time (usually 0).
p3 Function table size (must be a power of 2, should be large,
e.g. 2^18 == 262144).
p4 Function table number (auto-generated if 0).
p5 Fundamental frequency of the generated waveform
(cycles per second).
p6 Bandwidth of the partials (cents).
p7 Scaling factor for partial bandwidth (log of increase/decrease
with partial frequency, 0 is no stretch or shrink).
p8 Harmonic stretch/shrink of the partial (1 is harmonic).
p9 Number specifying the shape of the bandwidth profile:
1 Gaussian
2 Square
3 Exponential
p10 Profile function parameter.
p11-pN The amplitudes of the partials (may be 0).
*/
static void log(CSOUND *csound, const char *format, ...) {
va_list args;
va_start(args, format);
if (csound) {
if (csound->GetMessageLevel(csound) & CS_WARNMSG)
csound->MessageV(csound, 0, format, args);
} else {
vfprintf(stdout, format, args);
}
va_end(args);
}
static void warn(CSOUND *csound, const char *format, ...) {
if (csound) {
if (csound->GetMessageLevel(csound) & CS_WARNMSG) {
va_list args;
va_start(args, format);
csound->MessageV(csound, CSOUNDMSG_WARNING, format, args);
va_end(args);
}
} else {
va_list args;
va_start(args, format);
vfprintf(stderr, format, args);
va_end(args);
}
}
/* unused
static MYFLT profile_original(MYFLT fi, MYFLT bwi)
{
MYFLT x=fi/bwi;
x*=x;
if (x>14.71280603) {
return 0.0; //this avoids computing the e^(-x^2) where it's results
are very close to zero
}
return exp(-x)/bwi;
};
*/
// profile(p9_profile_shape, profile_sample_index_normalized, bandwidth_samples,
// p10_profile_parameter);
static MYFLT profile(int shape, MYFLT fi, MYFLT bwi, MYFLT a) {
MYFLT x = fi / bwi;
MYFLT y = 0;
switch (shape) {
case 1:
y = std::exp(-(x * x * a));
break;
case 2:
// The idea is to take profile 1 and simply say y goes to 0 if below a and
// to 1 if above a.
y = std::exp(-(x * x * a));
if (a < 0.00001) {
a = 0.00001;
} else if (a > 0.99999) {
a = 0.99999;
}
if (y < a) {
y = 0;
} else {
y = 1;
}
break;
case 3:
y = std::exp(-(std::fabs(x) * std::sqrt(a)));
break;
}
return y / bwi;
}
#if 0
// Keep this stuff around, it might come in handy later.
#define FUNC(b) MYFLT base_function_##b(MYFLT x, MYFLT a)
static MYFLT base_function_pulse(MYFLT x, MYFLT a)
{
return (std::fmod(x, 1.0) < a) ? -1.0 : 1.0;
}
FUNC(saw)
{
if(a < 0.00001f) {
a = 0.00001f;
} else if(a > 0.99999f) {
a = 0.99999f;
}
x = fmod(x, 1);
if(x < a) {
return x / a * 2.0f - 1.0f;
} else {
return (1.0f - x) / (1.0f - a) * 2.0f - 1.0f;
}
}
FUNC(triangle)
{
x = fmod(x + 0.25f, 1);
a = 1 - a;
if(a < 0.00001f) {
a = 0.00001f;
}
if(x < 0.5f) {
x = x * 4 - 1.0f;
} else {
x = (1.0f - x) * 4 - 1.0f;
}
x /= -a;
if(x < -1.0f) {
x = -1.0f;
}
if(x > 1.0f) {
x = 1.0f;
}
return x;
}
FUNC(power)
{
x = fmod(x, 1);
if(a < 0.00001f) {
a = 0.00001f;
} else if(a > 0.99999f) {
a = 0.99999f;
}
return powf(x, expf((a - 0.5f) * 10.0f)) * 2.0f - 1.0f;
}
FUNC(gauss)
{
x = fmod(x, 1) * 2.0f - 1.0f;
if(a < 0.00001f) {
a = 0.00001f;
}
return expf(-x * x * (expf(a * 8) + 5.0f)) * 2.0f - 1.0f;
}
FUNC(diode)
{
if(a < 0.00001f) {
a = 0.00001f;
} else if(a > 0.99999f) {
a = 0.99999f;
}
a = a * 2.0f - 1.0f;
x = cosf((x + 0.5f) * 2.0f * PI) - a;
if(x < 0.0f) {
x = 0.0f;
}
return x / (1.0f - a) * 2 - 1.0f;
}
FUNC(abssine)
{
x = fmod(x, 1);
if(a < 0.00001f) {
a = 0.00001f;
} else if(a > 0.99999f) {
a = 0.99999f;
}
return sinf(powf(x, expf((a - 0.5f) * 5.0f)) * PI) * 2.0f - 1.0f;
}
FUNC(pulsesine)
{
if(a < 0.00001f) {
a = 0.00001f;
}
x = (fmod(x, 1) - 0.5f) * expf((a - 0.5f) * logf(128));
if(x < -0.5f) {
x = -0.5f;
} else if(x > 0.5f) {
x = 0.5f;
}
x = sinf(x * PI * 2.0f);
return x;
}
FUNC(stretchsine)
{
x = fmod(x + 0.5f, 1) * 2.0f - 1.0f;
a = (a - 0.5f) * 4;
if(a > 0.0f) {
a *= 2;
}
a = powf(3.0f, a);
float b = powf(fabs(x), a);
if(x < 0) {
b = -b;
}
return -sinf(b * PI);
}
FUNC(chirp)
{
x = fmod(x, 1.0f) * 2.0f * PI;
a = (a - 0.5f) * 4;
if(a < 0.0f) {
a *= 2.0f;
}
a = powf(3.0f, a);
return sinf(x / 2.0f) * sinf(a * x * x);
}
FUNC(absstretchsine)
{
x = fmod(x + 0.5f, 1) * 2.0f - 1.0f;
a = (a - 0.5f) * 9;
a = powf(3.0f, a);
float b = powf(fabs(x), a);
if(x < 0) {
b = -b;
}
return -powf(sinf(b * PI), 2);
}
FUNC(chebyshev)
{
a = a * a * a * 30.0f + 1.0f;
return cosf(acosf(x * 2.0f - 1.0f) * a);
}
FUNC(sqr)
{
a = a * a * a * a * 160.0f + 0.001f;
return -atanf(sinf(x * 2.0f * PI) * a);
}
FUNC(spike)
{
float b = a * 0.66666; // the width of the range: if a == 0.5, b == 0.33333
if(x < 0.5) {
if(x < (0.5 - (b / 2.0))) {
return 0.0;
} else { // shift to zero, and expand to range from 0 to 1
x = (x + (b / 2) - 0.5) * (2.0 / b);
return x * (2.0 / b); // this is the slope: 1 / (b / 2)
}
} else {
if(x > (0.5 + (b / 2.0))) {
return 0.0;
} else {
x = (x - 0.5) * (2.0 / b);
return (1 - x) * (2.0 / b);
}
}
}
FUNC(circle)
{
// a is parameter: 0 -> 0.5 -> 1 // O.5 = circle
float b, y;
b = 2 - (a * 2); // b goes from 2 to 0
x = x * 4;
if(x < 2) {
x = x - 1; // x goes from -1 to 1
if((x < -b) || (x > b)) {
y = 0;
} else {
y = sqrt(1 - (x*x) / (b*b)); // normally * a^2, but a stays 1
}
} else {
x = x - 3; // x goes from -1 to 1 as well
if((x < -b) || (x > b)) {
y = 0;
} else {
y = -sqrt(1 - (x*x) / (b*b));
}
}
return y;
}
typedef MYFLT (*base_function_t)(MYFLT, MYFLT);
static base_function_t get_base_function(int index)
{
if(!index) {
return NULL;
}
if(index == 127) { //should be the custom wave
return NULL;
}
index--;
base_function_t functions[] = {
base_function_triangle,comment
base_function_pulse,
base_function_saw,
base_function_power,
base_function_gauss,
base_function_diode,
base_function_abssine,
base_function_pulsesine,
base_function_stretchsine,
base_function_chirp,
base_function_absstretchsine,
base_function_chebyshev,
base_function_sqr,
base_function_spike,
base_function_circle,
};
return functions[index];
}
#endif
extern "C" {
/*
Original code:
MYFLT PADsynth::profile(MYFLT fi, MYFLT bwi)
{
MYFLT x=fi/bwi;
x*=x;
if (x>14.71280603) {
return 0.0; //this avoids computing the e^(-x^2) where it's
results are very close to zero
}
return exp(-x)/bwi;
};
for (nh=1; nh<number_harmonics; nh++) { //for each harmonic
MYFLT bw_Hz;//bandwidth of the current harmonic measured in Hz
MYFLT bwi;
MYFLT fi;
MYFLT rF=f*relF(nh);
bw_Hz=(pow(2.0,bw/1200.0)-1.0)*f*pow(relF(nh),bwscale);
bwi=bw_Hz/(2.0*samplerate);
fi=rF/samplerate;
for (i=0; i<N/2; i++) { //here you can optimize, by avoiding to
// compute the profile for the full frequency
// (usually it's zero or very close to zero)
MYFLT hprofile;
hprofile=profile((i/(MYFLT)N)-fi,bwi);
freq_amp[i]+=hprofile*A[nh];
};
};
*/
//#define ROOT2 FL(1.41421356237309504880168872421)
/**
* This function computes a Csound function table
* using Nasca's "padsynth" algorithm..
*/
static int padsynth_gen(FGDATA *ff, FUNC *ftp) {
CSOUND *csound = ff->csound;
MYFLT p1_function_table_number = ff->fno;
MYFLT p2_score_time = ff->e.p[2];
int N = ff->flen;
if (N <= 0) return csound->ftError(ff, Str("Illegal table size %d"), N);
MYFLT p5_fundamental_frequency = ff->e.p[5];
MYFLT p6_partial_bandwidth = ff->e.p[6];
MYFLT p7_partial_bandwidth_scale_factor = ff->e.p[7];
MYFLT p8_harmonic_stretch = ff->e.p[8];
int p9_profile_shape = (int)ff->e.p[9];
// base_function_t base_function = get_base_function(p9_profile_shape);
MYFLT p10_profile_parameter = ff->e.p[10];
MYFLT samplerate = csound->GetSr(csound);
log(csound, "samplerate: %12d\n", (int)samplerate);
log(csound, "p1_function_table_number: %9.4f\n",
p1_function_table_number);
log(csound, "p2_score_time: %9.4f\n", p2_score_time);
log(csound, "p3_ftable_size %12d\n", N);
log(csound, "p4_gen_id: %12d\n", (int)(ff->e.p[4]));
log(csound, "p5_fundamental_frequency: %9.4f\n",
p5_fundamental_frequency);
log(csound, "p6_partial_bandwidth: %9.4f\n",
p6_partial_bandwidth);
log(csound, "p7_partial_bandwidth_scale_factor: %9.4f\n",
p7_partial_bandwidth_scale_factor);
log(csound, "p8_harmonic_stretch: %9.4f\n",
p8_harmonic_stretch);
log(csound, "p9_profile_shape: %12d\n", p9_profile_shape);
// log(csound, "profile_function: 0x%16p\n", base_function);
log(csound, "p10_profile_parameter: %9.4f\n",
p10_profile_parameter);
// The amplitudes of each partial are in pfield 11 and higher.
// N.B.: The partials are indexed starting from 1.
int partialN = ff->e.pcnt - 10;
std::vector<MYFLT> A(partialN + 1);
A[0] = FL(0.0);
for (int partialI = 1; partialI <= partialN; ++partialI) {
A[partialI] = ff->e.p[11 + partialI - 1];
}
for (int i = 0; i < N; ++i) {
ftp->ftable[i] = FL(0.0);
}
// N.B.: An in-place IFFT of N/2 complex to N real samples is used.
// ftable[1] contains the real part of the Nyquist frequency; we make it 0.
std::complex<MYFLT> *spectrum = (std::complex<MYFLT> *)ftp->ftable;
int complexN = int(N / 2.0);
for (int partialI = 1; partialI <= partialN; ++partialI) {
MYFLT partial_Hz =
p5_fundamental_frequency * p8_harmonic_stretch * ((MYFLT)partialI);
MYFLT frequency_sample_index_normalized = partial_Hz / ((MYFLT)samplerate);
int partial_frequency_index =
frequency_sample_index_normalized * ((MYFLT)N);
MYFLT bandwidth_Hz = (std::pow(2.0, p6_partial_bandwidth / 1200.0) - 1.0) *
p5_fundamental_frequency *
std::pow(p8_harmonic_stretch * ((MYFLT)partialI),
p7_partial_bandwidth_scale_factor);
MYFLT bandwidth_samples = bandwidth_Hz / (2.0 * samplerate);
log(csound, "partial[%3d]: %9.4f\n", partialI,
A[partialI]);
warn(csound, " partial_Hz: %9.4f\n", partial_Hz);
warn(csound, " frequency_sample_index_normalized: %9.4f\n",
frequency_sample_index_normalized);
warn(csound, " partial_frequency_index: %12d\n",
partial_frequency_index);
warn(csound, " bandwidth_Hz: %9.4f\n", bandwidth_Hz);
warn(csound, " bandwidth_samples: %12.8f\n",
bandwidth_samples);
for (int fft_sample_index = 0; fft_sample_index < complexN;
++fft_sample_index) {
MYFLT fft_sample_index_normalized =
((MYFLT)fft_sample_index) / ((MYFLT)N);
MYFLT profile_sample_index_normalized =
fft_sample_index_normalized - frequency_sample_index_normalized;
MYFLT profile_sample =
profile(p9_profile_shape, profile_sample_index_normalized,
bandwidth_samples, p10_profile_parameter);
// MYFLT profile_sample =
// profile_original(profile_sample_index_normalized, bandwidth_samples);
MYFLT real = profile_sample * A[partialI];
spectrum[fft_sample_index] += real;
};
};
std::default_random_engine generator;
std::uniform_real_distribution<double> distribution(0.0, 6.28318530718);
for (int complexI = 0; complexI < complexN; ++complexI) {
MYFLT random_phase = distribution(generator);
MYFLT real = spectrum[complexI].real();
spectrum[complexI].real(real * std::cos(random_phase));
spectrum[complexI].imag(real * std::sin(random_phase));
};
spectrum[0].imag(0);
csound->InverseRealFFT(csound, ftp->ftable, N);
// Normalize,
MYFLT maximum = FL(0.0);
for (int i = 0; i < N; ++i) {
if (std::fabs(ftp->ftable[i]) > maximum) {
maximum = std::fabs(ftp->ftable[i]);
// warn(csound, "maximum at %d: %f\n", i, maximum);
}
}
for (int i = 0; i < N; ++i) {
ftp->ftable[i] /= maximum * ROOT2;
}
return OK;
}
static NGFENS padsynth_gens[] = {{(char *)"padsynth", padsynth_gen},
{NULL, NULL}};
PUBLIC NGFENS *csound_fgen_init(CSOUND *csound) {
IGN(csound);
return padsynth_gens;
}
};
|