1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994
|
/*
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Partikkel - a granular synthesis module for Csound 5
Copyright (C) 2006-2016 Oeyvind Brandtsegg, Torgeir Strand Henriksen,
Thom Johansen
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "partikkel.h"
#include <limits.h>
#include <math.h>
#define INITERROR(x) csound->InitError(csound, Str("partikkel: " x))
#define PERFERROR(x) csound->PerfError(csound, &(p->h),Str("partikkel: " x))
#define WARNING(x) csound->Warning(csound, Str("partikkel: " x))
/* Assume csound and p pointers are always available */
#define frand() (csound->RandMT(&p->randstate)/(double)(0xffffffff))
/* linear interpolation between x and y by z
* NOTE: arguments evaluated more than once, do not pass anything with side
* effects
*/
#define lrp(x, y, z) ((x) + ((y) - (x))*(z))
/* macro used to wrap an index back to start position if it's out of bounds. */
#define clip_index(index, from, to) \
if (index > (uint32_t)(to) || index < (uint32_t)(from)) \
index = (uint32_t)(from);
/* here follows routines for maintaining a linked list of grains */
/* initialises a linked list of NODEs */
static void init_pool(GRAINPOOL *s, uint32_t max_grains)
{
uint32_t i;
NODE **p = &s->grainlist;
NODE *grainpool = (NODE *)s->mempool;
s->free_nodes = max_grains;
/* build list of grains in pool */
for (i = 0; i < max_grains; ++i) {
NODE *node;
*p = grainpool + i;
node = *p;
node->next = NULL;
p = &(node->next);
}
}
/* returns pointer to new node */
static NODE *get_grain(GRAINPOOL *s)
{
NODE *ret = s->grainlist;
if (s->grainlist)
s->grainlist = s->grainlist->next;
s->free_nodes--;
return ret;
}
/* returns a NODE to the pool. function returns pointer to next node */
static NODE *return_grain(GRAINPOOL *s, NODE *c)
{
NODE *oldnext = c->next;
c->next = s->grainlist;
s->grainlist = c;
s->free_nodes++;
return oldnext;
}
/* return oldest grain to the pool, we use this when we're out of grains */
static void kill_oldest_grain(GRAINPOOL *s, NODE *n)
{
while (n->next->next)
n = n->next;
return_grain(s, n->next);
n->next = NULL;
}
static int32_t setup_globals(CSOUND *csound, PARTIKKEL *p)
{
PARTIKKEL_GLOBALS *pg;
PARTIKKEL_GLOBALS_ENTRY **pe;
pg = csound->QueryGlobalVariable(csound, "partikkel");
if (pg == NULL) {
int32_t i;
if (UNLIKELY(csound->CreateGlobalVariable(csound, "partikkel",
sizeof(PARTIKKEL_GLOBALS)) != 0))
return INITERROR("could not allocate globals");
pg = csound->QueryGlobalVariable(csound, "partikkel");
pg->rootentry = NULL;
/* build default tables. allocate enough for three, plus extra for the
* ftable data itself */
/* we only fill in the entries in the FUNC struct that we use */
/* table with data [1.0, 1.0, 1.0], used as default by envelopes */
pg->ooo_tab = (FUNC *)csound->Calloc(csound, sizeof(FUNC));
pg->ooo_tab->ftable = (MYFLT*)csound->Calloc(csound, 3*sizeof(MYFLT));
pg->ooo_tab->flen = 2;
pg->ooo_tab->lobits = 31;
for (i = 0; i <= 2; ++i)
pg->ooo_tab->ftable[i] = FL(1.0);
/* table with data [0.0, 0.0, 0.0], used as default by grain
* distribution table, channel masks and grain waveforms */
pg->zzz_tab = (FUNC *)csound->Calloc(csound, sizeof(FUNC));
pg->zzz_tab->ftable = (MYFLT*)csound->Calloc(csound, 3*sizeof(MYFLT));
pg->zzz_tab->flen = 2;
pg->zzz_tab->lobits = 31;
/* table with data [0.0, 0.0, 1.0], used as default by gain masks,
* fm index table, and wave start and end freq tables */
pg->zzo_tab = (FUNC *)csound->Calloc(csound, sizeof(FUNC));
pg->zzo_tab->ftable = (MYFLT*)csound->Calloc(csound, 4*sizeof(MYFLT));
pg->zzo_tab->ftable[2] = FL(1.0);
pg->zzo_tab->flen = 3; /* JPff */
/* table with data [0.0, 0.0, 0.5, 0.5, 0.5, 0.5, 0.0], used as default
* by wave gain table */
pg->zzhhhhz_tab = (FUNC *)csound->Calloc(csound, sizeof(FUNC));
pg->zzhhhhz_tab->ftable = (MYFLT*)csound->Calloc(csound, 8*sizeof(MYFLT));
for (i = 2; i <= 5; ++i)
pg->zzhhhhz_tab->ftable[i] = FL(0.5);
}
p->globals = pg;
if ((int32_t)*p->opcodeid == 0) {
/* opcodeid 0 means we do not bother with the sync opcode */
p->globals_entry = NULL;
return OK;
}
/* try to find entry corresponding to our opcodeid */
pe = &pg->rootentry;
while (*pe != NULL && (*pe)->id != *p->opcodeid)
pe = &((*pe)->next);
/* check if one already existed, if not, create one */
if (*pe == NULL) {
*pe = csound->Malloc(csound, sizeof(PARTIKKEL_GLOBALS_ENTRY));
(*pe)->id = *p->opcodeid;
(*pe)->partikkel = p;
/* allocate table for sync data */
(*pe)->synctab = csound->Calloc(csound, 2*CS_KSMPS*sizeof(MYFLT));
(*pe)->next = NULL;
}
p->globals_entry = *pe;
return OK;
}
/* look up a sample from a csound table using linear interpolation
* tab: csound table pointer
* index: fixed point index in the range 0..PHMASK inclusive
* zscale: 1/(1 << tab->lobits)
* shift: length of phase register in bits minus length of table in bits
*/
static inline MYFLT lrplookup(FUNC *tab, uint32_t phase, MYFLT zscale,
uint32_t shift)
{
const uint32_t index = phase >> shift;
const uint32_t mask = (1 << shift) - 1;
MYFLT a = tab->ftable[index];
MYFLT b = tab->ftable[index + 1];
MYFLT z = (MYFLT)(phase & mask)*zscale;
return lrp(a, b, z);
}
/* Why not use csound->intpow ? */
static inline double intpow_(MYFLT x, uint32_t n)
{
double ans = 1.0;
while (n != 0) {
if (n & 1)
ans *= x;
n >>= 1;
x *= x;
}
return ans;
}
/* dsf synthesis for trainlets */
static inline MYFLT dsf(FUNC *tab, GRAIN *grain, double beta, MYFLT zscale,
uint32_t cosineshift)
{
MYFLT numerator, denominator, cos_beta;
MYFLT lastharmonic, result;
uint32_t fbeta, N = grain->harmonics;
const MYFLT a = grain->falloff;
const MYFLT a_pow_N = grain->falloff_pow_N;
fbeta = (uint32_t)(beta*(double)UINT_MAX);
cos_beta = lrplookup(tab, fbeta, zscale, cosineshift);
denominator = FL(1.0) - FL(2.0)*a*cos_beta + a*a;
if (denominator < FL(1e-6) && denominator > FL(-1e-6)) {
/* handle this special case to avoid divison by zero */
result = N - FL(1.0);
} else {
/* this factor can also serve as a last, fadable harmonic, if we in the
* future want to fade the number of harmonics smoothly */
lastharmonic = a_pow_N*lrplookup(tab, fbeta*N, zscale, cosineshift);
numerator = FL(1.0) - a*cos_beta - lastharmonic
+ a*a_pow_N*lrplookup(tab, (N - 1)*fbeta, zscale, cosineshift);
result = numerator/denominator - FL(1.0);
}
return result;
}
static int32_t partikkel_init(CSOUND *csound, PARTIKKEL *p)
{
uint32_t size;
int32_t ret;
if ((ret = setup_globals(csound, p)) != OK)
return ret;
p->grainroot = NULL;
/* set grainphase to 1.0 to make grain scheduler create a grain immediately
* after starting opcode */
p->grainphase = 1.0;
p->num_outputs = csound->GetOutputArgCnt(p); /* save for faster access */
/* resolve tables with no default table handling */
p->costab = csound->FTFind(csound, p->cosine);
/* resolve some tables with default table handling */
p->disttab = *p->dist >= FL(0.0)
? csound->FTFind(csound, p->dist)
: p->globals->zzz_tab;
p->gainmasktab = *p->gainmasks >= FL(0.0)
? csound->FTFind(csound, p->gainmasks)
: p->globals->zzo_tab;
p->channelmasktab = *p->channelmasks >= FL(0.0)
? csound->FTFind(csound, p->channelmasks)
: p->globals->zzz_tab;
p->env_attack_tab = *p->env_attack >= FL(0.0)
? csound->FTFind(csound, p->env_attack)
: p->globals->ooo_tab;
p->env_decay_tab = *p->env_decay >= FL(0.0)
? csound->FTFind(csound, p->env_decay)
: p->globals->ooo_tab;
p->env2_tab = *p->env2 >= FL(0.0)
? csound->FTFind(csound, p->env2)
: p->globals->ooo_tab;
p->wavfreqstarttab = *p->wavfreq_startmuls >= FL(0.0)
? csound->FTFind(csound, p->wavfreq_startmuls)
: p->globals->zzo_tab;
p->wavfreqendtab = *p->wavfreq_endmuls >= FL(0.0)
? csound->FTFind(csound, p->wavfreq_endmuls)
: p->globals->zzo_tab;
p->fmamptab = *p->fm_indices >= FL(0.0)
? csound->FTFind(csound, p->fm_indices)
: p->globals->zzo_tab;
p->wavgaintab = *p->waveamps >= FL(0.0)
? csound->FTFind(csound, p->waveamps)
: p->globals->zzhhhhz_tab;
if (*p->pantable >= FL(0.0)) {
p->pantab = csound->FTFind(csound, p->pantable);
if (!p->pantab)
return INITERROR("unable to load panning function table");
} else {
p->pantab = NULL; /* use default linear panning function */
}
if (UNLIKELY(!p->disttab))
return INITERROR("unable to load distribution table");
if (UNLIKELY(!p->costab))
return INITERROR("unable to load cosine table");
if (UNLIKELY(!p->gainmasktab))
return INITERROR("unable to load gain mask table");
if (UNLIKELY(!p->channelmasktab))
return INITERROR("unable to load channel mask table");
if (UNLIKELY(!p->env_attack_tab || !p->env_decay_tab || !p->env2_tab))
return INITERROR("unable to load envelope table");
if (UNLIKELY(!p->wavfreqstarttab))
return INITERROR("unable to load start frequency scaler table");
if (UNLIKELY(!p->wavfreqendtab))
return INITERROR("unable to load end frequency scaler table");
if (UNLIKELY(!p->fmamptab))
return INITERROR("unable to load FM index table");
if (UNLIKELY(!p->wavgaintab))
return INITERROR("unable to load wave gain table");
p->disttabshift = sizeof(uint32_t)*CHAR_BIT -
(uint32_t)(log((double)p->disttab->flen)/log(2.0) + 0.5);
p->cosineshift = sizeof(uint32_t)*CHAR_BIT -
(uint32_t)(log((double)p->costab->flen)/log(2.0) + 0.5);
p->zscale = FL(1.0)/FL(1 << p->cosineshift);
p->wavfreqstartindex = p->wavfreqendindex = 0;
p->gainmaskindex = p->channelmaskindex = 0;
p->wavgainindex = 0;
p->fmampindex = 0;
p->distindex = 0;
p->synced = 0;
p->graininc = 0.0;
/* allocate memory for the grain mix buffer */
size = CS_KSMPS*sizeof(MYFLT);
if (p->aux.auxp == NULL || p->aux.size < size)
csound->AuxAlloc(csound, size, &p->aux);
else
memset(p->aux.auxp, 0, size);
/* allocate memory for the grain pool and initialize it*/
if (UNLIKELY(*p->max_grains < FL(1.0)))
return INITERROR("maximum number of grains needs to be non-zero "
"and positive");
size = ((uint32_t)*p->max_grains)*sizeof(NODE);
if (p->aux2.auxp == NULL || p->aux2.size < size)
csound->AuxAlloc(csound, size, &p->aux2);
p->gpool.mempool = p->aux2.auxp;
init_pool(&p->gpool, (uint32_t)*p->max_grains);
/* find out which of the xrate parameters are arate */
p->grainfreq_arate = IS_ASIG_ARG(p->grainfreq) ? 1 : 0;
p->out_of_voices_warning = 0; /* reset user warning indicator */
csound->SeedRandMT(&p->randstate, NULL, csound->GetRandomSeedFromTime());
return OK;
}
/* n is sample number for which the grain is to be scheduled
* offset is time offset for grain in seconds, passed separately for hints */
static int32_t schedule_grain(CSOUND *csound, PARTIKKEL *p, NODE *node, int32 n,
double offset)
{
/* make a new grain */
MYFLT startfreqscale, endfreqscale;
MYFLT maskgain, maskchannel;
GRAIN *grain = &node->grain;
uint32_t i;
uint32_t chan;
MYFLT graingain;
MYFLT *gainmasks = p->gainmasktab->ftable;
MYFLT *chanmasks = p->channelmasktab->ftable;
MYFLT *freqstarts = p->wavfreqstarttab->ftable;
MYFLT *freqends = p->wavfreqendtab->ftable;
MYFLT *fmamps = p->fmamptab->ftable;
MYFLT *wavgains = p->wavgaintab->ftable;
uint32_t wavgainsindex;
/* the table boundary limits might well change at any time, so we do the
* boundary clipping before using it to fetch a value */
/* get gain mask */
clip_index(p->gainmaskindex, gainmasks[0], gainmasks[1]);
maskgain = gainmasks[p->gainmaskindex + 2];
p->gainmaskindex++;
/* get channel mask */
clip_index(p->channelmaskindex, chanmasks[0], chanmasks[1]);
maskchannel = chanmasks[p->channelmaskindex + 2];
p->channelmaskindex++;
/* get frequency sweep start scaler */
clip_index(p->wavfreqstartindex, freqstarts[0], freqstarts[1]);
startfreqscale = freqstarts[p->wavfreqstartindex + 2];
p->wavfreqstartindex++;
/* get frequency sweep end scaler */
clip_index(p->wavfreqendindex, freqends[0], freqends[1]);
endfreqscale = freqends[p->wavfreqendindex + 2];
p->wavfreqendindex++;
/* get fm modulation index */
clip_index(p->fmampindex, fmamps[0], fmamps[1]);
grain->fmamp = fmamps[p->fmampindex + 2];
p->fmampindex++;
/* calculate waveform gain table index for later use */
clip_index(p->wavgainindex, wavgains[0], wavgains[1]);
wavgainsindex = 5*p->wavgainindex++;
graingain = *p->amplitude*maskgain;
/* check if our mask gain is zero or if stochastic masking takes place */
if ((fabs(graingain) < FL(1e-8)) || (frand() > 1.0 - *p->randommask)) {
/* grain is either masked out or has a zero amplitude, so we cancel it
* and proceed with scheduling our next grain */
return_grain(&p->gpool, node);
return OK;
}
grain->env2amount = *p->env2_amount;
grain->envattacklen = (1.0 - *p->sustain_amount)*(*p->a_d_ratio);
grain->envdecaystart = grain->envattacklen + *p->sustain_amount;
grain->fmenvtab = p->fmenvtab;
/* place a grain in between two channels according to channel mask value */
chan = (uint32_t)maskchannel;
if (UNLIKELY(chan >= p->num_outputs)) {
return_grain(&p->gpool, node);
return PERFERROR("channel mask specifies non-existing output channel");
}
/* use panning law table if specified */
if (p->pantab != NULL) {
const uint32_t tabsize = p->pantab->flen/8;
/* offset of pan table for current output pair */
const uint32_t tab_offset = chan*tabsize;
const uint32_t offset = (uint32_t)((maskchannel - chan)*(tabsize - 1));
const uint32_t flip_offset = tabsize - 1 - offset;
grain->gain1 = p->pantab->ftable[tab_offset + flip_offset];
grain->gain2 = p->pantab->ftable[tab_offset + offset];
} else {
grain->gain1 = FL(1.0) - (maskchannel - chan);
grain->gain2 = maskchannel - chan;
}
grain->chan1 = chan;
grain->chan2 = p->num_outputs > chan + 1 ? chan + 1 : 0;
/* duration in samples */
const double dur_samples = CS_ESR*(*p->duration)/1000.0;
/* if grainlength is below one sample, we'll just cancel it */
if (dur_samples < 1.0) {
return_grain(&p->gpool, node);
return OK;
}
/* the grain is supposed to start at grainphase = 0, so calculate how far
* we overshot that and correct all relevant wave and envelope phases
* for proper sub-sample grain placement. if offset != 0, our grains
* are probably not very synchronous, and will not benefit from this.
* also only enable it for sufficiently high grain rates. current
* threshold corresponds to around 150hz */
const double phase_corr = offset == 0.0 && p->graininc > 0.0032
? p->grainphase/p->graininc
: 0.0;
const double rcp_samples = 1.0/dur_samples;
grain->start = (uint32_t)((double)n + offset*CS_ESR + phase_corr);
grain->stop = (uint32_t)(grain->start + dur_samples - phase_corr) + 1;
/* set up the four wavetables and dsf to use in the grain */
for (i = 0; i < 5; ++i) {
WAVEDATA *curwav = &grain->wav[i];
MYFLT freqmult = i != WAV_TRAINLET
? *(*(&p->wavekey1 + i))*(*p->wavfreq)
: *p->trainletfreq;
MYFLT startfreq = freqmult*startfreqscale;
MYFLT endfreq = freqmult*endfreqscale;
MYFLT *samplepos = *(&p->samplepos1 + i);
MYFLT enddelta;
curwav->table = i != WAV_TRAINLET ? p->wavetabs[i] : p->costab;
curwav->gain = wavgains[wavgainsindex + i + 2]*graingain;
/* drop wavetables with close to zero gain */
if (fabs(curwav->gain) < FL(1e-8)) {
curwav->table = NULL;
continue;
}
/* now do some trainlet specific setup */
if (i == WAV_TRAINLET) {
double normalize, nh;
MYFLT maxfreq = startfreq > endfreq ? startfreq : endfreq;
/* limit dsf harmonics to nyquist to avoid aliasing.
* minumum number of harmonics is 2, since 1 would yield just dc,
* which we remove anyway */
nh = 0.5*CS_ESR/fabs(maxfreq);
if (nh > fabs(*p->harmonics))
nh = fabs(*p->harmonics);
grain->harmonics = (uint32_t)nh + 1;
if (grain->harmonics < 2)
grain->harmonics = 2;
grain->falloff = *p->falloff;
grain->falloff_pow_N = intpow_(grain->falloff, grain->harmonics);
/* normalize trainlets to uniform peak, using geometric sum */
if (FABS(grain->falloff) > FL(0.9999) &&
FABS(grain->falloff) < FL(1.0001))
/* limit case for falloff = 1 */
normalize = 1.0/(double)grain->harmonics;
else
normalize = (1.0 - fabs(grain->falloff))
/(1.0 - fabs(grain->falloff_pow_N));
curwav->gain *= normalize;
}
curwav->delta = startfreq*csound->onedsr;
enddelta = endfreq*csound->onedsr;
if (i != WAV_TRAINLET) {
/* set wavphase to samplepos parameter */
curwav->phase = samplepos[n];
} else {
/* set to 0.5 so the dsf pulse doesn't occur at the very start of
* the grain where it'll probably be enveloped away anyway */
curwav->phase = 0.5;
}
/* place grain between samples. this is especially important to make
* high frequency synchronous grain streams sounds right */
curwav->phase += phase_corr*startfreq*csound->onedsr;
/* clamp phase in case it's out of bounds */
curwav->phase = curwav->phase > 1.0 ? 1.0 : curwav->phase;
curwav->phase = curwav->phase < 0.0 ? 0.0 : curwav->phase;
/* phase and delta for wavetable synthesis are scaled by table length */
if (i != WAV_TRAINLET) {
double tablen = (double)curwav->table->flen;
curwav->phase *= tablen;
curwav->delta *= tablen;
enddelta *= tablen;
}
/* the sweep curve generator is a first order iir filter */
if (curwav->delta == enddelta || *p->freqsweepshape == FL(0.5)) {
/* special case for linear sweep */
curwav->sweepdecay = 1.0;
curwav->sweepoffset = (enddelta - curwav->delta)*rcp_samples;
} else {
/* handle extreme cases the generic code doesn't handle too well */
if (*p->freqsweepshape < FL(0.001)) {
curwav->sweepdecay = 1.0;
curwav->sweepoffset = 0.0;
} else if (*p->freqsweepshape > FL(0.999)) {
curwav->sweepdecay = 0.0;
curwav->sweepoffset = enddelta;
} else {
double start_offset, total_decay, t;
t = fabs((*p->freqsweepshape - 1.0)/(*p->freqsweepshape));
curwav->sweepdecay = pow(t, 2.0*rcp_samples);
total_decay = t*t; /* pow(curwav->sweepdecay, samples) */
start_offset = (enddelta - curwav->delta*total_decay)/
(1.0 - total_decay);
curwav->sweepoffset = start_offset*(1.0 - curwav->sweepdecay);
}
}
}
grain->envinc = rcp_samples;
grain->envphase = phase_corr*grain->envinc;
/* link new grain into the list */
node->next = p->grainroot;
p->grainroot = node;
return OK;
}
/* this function schedules the grains that are bound to happen this k-period */
static int32_t schedule_grains(CSOUND *csound, PARTIKKEL *p)
{
uint32_t koffset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t n, nsmps = CS_KSMPS;
NODE *node;
MYFLT **waveformparams = &p->waveform1;
MYFLT grainfreq = fabs(*p->grainfreq);
/* krate table lookup, first look up waveform ftables */
for (n = 0; n < 4; ++n) {
p->wavetabs[n] = *waveformparams[n] >= FL(0.0)
? csound->FTnp2Finde(csound, waveformparams[n])
: p->globals->zzz_tab;
if (UNLIKELY(p->wavetabs[n] == NULL))
return PERFERROR("unable to load waveform table");
}
/* look up fm envelope table for use in grains scheduled this kperiod */
p->fmenvtab = *p->fm_env >= FL(0.0)
? csound->FTFind(csound, p->fm_env)
: p->globals->ooo_tab;
if (UNLIKELY(!p->fmenvtab))
return PERFERROR("unable to load FM envelope table");
if (UNLIKELY(early)) nsmps -= early;
/* start grain scheduling */
for (n = koffset; n < nsmps; ++n) {
if (p->sync[n] >= FL(1.0)) {
/* we got a full sync pulse, hardsync grain clock if needed */
if (!p->synced) {
p->grainphase = 1.0;
p->synced = 1;
} else {
/* if sync is held high, stop the grain clock until it goes
* back to zero or below again */
p->graininc = 0.0;
}
} else {
/* softsync-like functionality where we advance the grain clock by
* the amount given by the sync value */
if (p->sync[n]) {
p->grainphase += p->sync[n];
p->grainphase = p->grainphase > 1.0 ? 1.0 : p->grainphase;
p->grainphase = p->grainphase < 0.0 ? 0.0 : p->grainphase;
}
p->synced = 0;
}
if (p->grainphase >= 1.0) {
double offset;
do
p->grainphase -= 1.0;
while (UNLIKELY(p->grainphase >= 1.0));
/* schedule new synchronous or synced grain */
/* first determine time offset for grain */
if (*p->distribution >= FL(0.0)) {
/* positive distrib, choose random point in table */
uint32_t rnd = csound->RandMT(&p->randstate);
offset = p->disttab->ftable[rnd >> p->disttabshift];
offset *= *p->distribution;
} else {
/* negative distrib, choose sequential point in table */
offset = p->disttab->ftable[p->distindex++];
offset *= -*p->distribution;
if ((uint32_t)p->distindex >= p->disttab->flen)
p->distindex = 0;
}
/* convert offset to seconds, also limiting it to 10 seconds to
* avoid accidentally filling grain pool with grains which will
* spawn in half a day */
if (grainfreq < FL(0.001)) {
/* avoid div by zero */
offset = 0;
} else {
offset /= grainfreq;
if (offset > 10.0) offset = 10.0;
}
/* check if there are any grains left in the pool */
if (!p->gpool.free_nodes) {
if (!p->out_of_voices_warning) {
WARNING("maximum number of grains reached");
p->out_of_voices_warning = 1; /* we only warn once */
}
kill_oldest_grain(&p->gpool, p->grainroot);
}
/* add a new grain */
node = get_grain(&p->gpool);
/* check first, in case we'll change the above behaviour of
* killing a grain */
if (node) {
int32_t ret = schedule_grain(csound, p, node, n, offset);
if (ret != OK)
return ret;
}
/* create a sync pulse for use in partikkelsync */
if (p->globals_entry)
p->globals_entry->synctab[n] = FL(1.0);
}
/* store away the scheduler phase for use in partikkelsync */
if (p->globals_entry)
p->globals_entry->synctab[CS_KSMPS + n] = p->grainphase;
if (p->grainfreq_arate)
grainfreq = fabs(p->grainfreq[n]);
p->graininc = grainfreq*csound->onedsr;
p->grainphase += p->graininc;
}
return OK;
}
/* Main synthesis loops */
/* NOTE: the main synthesis loop is duplicated for both wavetable and
* trainlet synthesis for speed */
static inline void render_wave(PARTIKKEL *p, GRAIN *grain, WAVEDATA *wav,
MYFLT *buf, uint32_t stop)
{
uint32_t n;
double fmenvphase = grain->envphase;
/* wavetable synthesis */
for (n = grain->start; n < stop; ++n) {
double tablen = (double)wav->table->flen;
uint32_t x0;
MYFLT frac, fmenv;
/* make sure phase accumulator stays within bounds */
while (UNLIKELY(wav->phase >= tablen))
wav->phase -= tablen;
while (UNLIKELY(wav->phase < 0.0))
wav->phase += tablen;
/* sample table lookup with linear interpolation */
x0 = (uint32_t)wav->phase;
frac = (MYFLT)(wav->phase - x0);
buf[n] += lrp(wav->table->ftable[x0], wav->table->ftable[x0 + 1],
frac)*wav->gain;
fmenv = grain->fmenvtab->ftable[(size_t)(fmenvphase*FMAXLEN)
>> grain->fmenvtab->lobits];
fmenvphase += grain->envinc;
wav->phase += wav->delta + wav->delta*p->fm[n]*grain->fmamp*fmenv;
/* apply sweep */
wav->delta = wav->delta*wav->sweepdecay + wav->sweepoffset;
}
}
static inline void render_trainlet(PARTIKKEL *p, GRAIN *grain, WAVEDATA *wav,
MYFLT *buf, uint32_t stop)
{
uint32_t n;
double fmenvphase = grain->envphase;
/* trainlet synthesis */
for (n = grain->start; n < stop; ++n) {
MYFLT fmenv;
while (UNLIKELY(wav->phase >= 1.0))
wav->phase -= 1.0;
while (UNLIKELY(wav->phase < 0.0))
wav->phase += 1.0;
/* dsf/trainlet synthesis */
buf[n] += wav->gain*dsf(p->costab, grain, wav->phase, p->zscale,
p->cosineshift);
fmenv = grain->fmenvtab->ftable[(size_t)(fmenvphase*FMAXLEN)
>> grain->fmenvtab->lobits];
fmenvphase += grain->envinc;
wav->phase += wav->delta + wav->delta*p->fm[n]*grain->fmamp*fmenv;
wav->delta = wav->delta*wav->sweepdecay + wav->sweepoffset;
}
}
/* do the actual waveform synthesis */
static inline void render_grain(CSOUND *csound, PARTIKKEL *p, GRAIN *grain)
{
IGN(csound);
int32_t i;
uint32_t n;
MYFLT *out1 = *(&(p->output1) + grain->chan1);
MYFLT *out2 = *(&(p->output1) + grain->chan2);
uint32_t stop = grain->stop > CS_KSMPS
? CS_KSMPS : grain->stop;
MYFLT *buf = (MYFLT *)p->aux.auxp;
if (grain->start >= CS_KSMPS)
return; /* grain starts at a later kperiod */
for (i = 0; i < 5; ++i) {
WAVEDATA *curwav = &grain->wav[i];
/* check if ftable is to be rendered */
if (curwav->table == NULL)
continue;
if (i != WAV_TRAINLET)
render_wave(p, grain, curwav, buf, stop);
else
render_trainlet(p, grain, curwav, buf, stop);
}
/* apply envelopes */
for (n = grain->start; n < stop; ++n) {
MYFLT env, env2, output;
double envphase;
FUNC *envtable;
/* apply envelopes */
if (grain->envphase < grain->envattacklen) {
envtable = p->env_attack_tab;
envphase = grain->envphase/grain->envattacklen;
} else if (grain->envphase < grain->envdecaystart) {
/* for sustain, use last sample in attack table */
envtable = p->env_attack_tab;
envphase = 1.0;
} else if (grain->envphase < 1.0) {
envtable = p->env_decay_tab;
envphase = (grain->envphase - grain->envdecaystart)/(1.0 -
grain->envdecaystart);
} else {
/* clamp envelope phase because of round-off errors */
envtable = grain->envdecaystart < 1.0 ?
p->env_decay_tab : p->env_attack_tab;
envphase = grain->envphase = 1.0;
}
/* fetch envelope values */
env = envtable->ftable[(size_t)(envphase*FMAXLEN)
>> envtable->lobits];
env2 = p->env2_tab->ftable[(size_t)(grain->envphase*FMAXLEN)
>> p->env2_tab->lobits];
env2 = FL(1.0) - grain->env2amount + grain->env2amount*env2;
grain->envphase += grain->envinc;
/* generate grain output sample */
output = buf[n]*env*env2;
/* now distribute this grain to the output channels it's supposed to
* end up in, as decided by the channel mask */
out1[n] += output*grain->gain1;
out2[n] += output*grain->gain2;
}
/* now clear the area we just worked in */
memset(buf + grain->start, 0, (stop - grain->start)*sizeof(MYFLT));
}
static int32_t partikkel(CSOUND *csound, PARTIKKEL *p)
{
int32_t ret;
uint32_t n;
NODE **nodeptr;
MYFLT **outputs = &p->output1;
if (UNLIKELY(p->aux.auxp == NULL || p->aux2.auxp == NULL))
return PERFERROR("not initialised");
if ((ret = schedule_grains(csound, p)) != OK)
return ret;
/* clear output buffers, we'll be accumulating our outputs */
for (n = 0; n < p->num_outputs; ++n)
memset(outputs[n], 0, sizeof(MYFLT)*CS_KSMPS);
/* prepare to traverse grain list */
nodeptr = &p->grainroot;
while (*nodeptr) {
GRAIN *grain = &((*nodeptr)->grain);
/* render current grain to outputs */
render_grain(csound, p, grain);
/* check if grain is finished */
if (grain->stop <= CS_KSMPS) {
/* grain is finished, deactivate it */
*nodeptr = return_grain(&p->gpool, *nodeptr);
} else {
/* extend grain lifetime with one k-period and find next grain */
if (CS_KSMPS > grain->start)
grain->start = 0; /* grain is active */
else
grain->start -= CS_KSMPS; /* grain is not yet active */
grain->stop -= CS_KSMPS;
nodeptr = &((*nodeptr)->next);
}
}
return OK;
}
/* partikkelsync stuff */
static int32_t partikkelsync_init(CSOUND *csound, PARTIKKEL_SYNC *p)
{
PARTIKKEL_GLOBALS *pg;
PARTIKKEL_GLOBALS_ENTRY *pe;
if (UNLIKELY((int32_t)*p->opcodeid == 0))
return csound->InitError(csound,
Str("partikkelsync: opcode id needs to be a non-zero integer"));
pg = csound->QueryGlobalVariable(csound, "partikkel");
if (UNLIKELY(pg == NULL || pg->rootentry == NULL))
return csound->InitError(csound,
Str("partikkelsync: could not find opcode id"));
pe = pg->rootentry;
while (pe->id != *p->opcodeid && pe->next != NULL)
pe = pe->next;
if (UNLIKELY(pe->id != *p->opcodeid))
return csound->InitError(csound,
Str("partikkelsync: could not find opcode id"));
p->ge = pe;
/* find out if we're supposed to output grain scheduler phase too */
p->output_schedphase = csound->GetOutputArgCnt(p) > 1;
return OK;
}
static int32_t partikkelsync(CSOUND *csound, PARTIKKEL_SYNC *p)
{
IGN(csound);
/* write sync pulse data */
memcpy(p->syncout, p->ge->synctab, CS_KSMPS*sizeof(MYFLT));
/* write scheduler phase data, if user wanted it */
if (p->output_schedphase) {
memcpy(p->schedphaseout, p->ge->synctab + CS_KSMPS,
CS_KSMPS*sizeof(MYFLT));
}
/* clear first half of sync table to get rid of old sync pulses */
memset(p->ge->synctab, 0, CS_KSMPS*sizeof(MYFLT));
return OK;
}
static int32_t get_global_entry(CSOUND *csound, PARTIKKEL_GLOBALS_ENTRY **entry,
MYFLT opcodeid, const char *prefix)
{
PARTIKKEL_GLOBALS *pg;
PARTIKKEL_GLOBALS_ENTRY *pe;
pg = csound->QueryGlobalVariable(csound, "partikkel");
if (UNLIKELY(pg == NULL))
return csound->InitError(csound,
Str("%s: partikkel not initialized"), prefix);
/* try to find entry corresponding to our opcodeid */
pe = pg->rootentry;
while (pe != NULL && pe->id != opcodeid)
pe = pe->next;
if (UNLIKELY(pe == NULL))
return csound->InitError(csound,
Str("%s: could not find opcode id"), prefix);
*entry = pe;
return OK;
}
static int32_t partikkelget_init(CSOUND *csound, PARTIKKEL_GET *p)
{
return get_global_entry(csound, &p->ge, *p->opcodeid, "partikkelget");
}
static int32_t partikkelget(CSOUND *csound, PARTIKKEL_GET *p)
{
IGN(csound);
PARTIKKEL *partikkel = p->ge->partikkel;
switch ((int32_t)*p->index) {
case 0:
*p->valout = (MYFLT)partikkel->gainmaskindex;
break;
case 1:
*p->valout = (MYFLT)partikkel->wavfreqstartindex;
break;
case 2:
*p->valout = (MYFLT)partikkel->wavfreqendindex;
break;
case 3:
*p->valout = (MYFLT)partikkel->fmampindex;
break;
case 4:
*p->valout = (MYFLT)partikkel->channelmaskindex;
break;
case 5:
*p->valout = (MYFLT)partikkel->wavgainindex;
break;
}
return OK;
}
static int32_t partikkelset_init(CSOUND *csound, PARTIKKEL_SET *p)
{
return get_global_entry(csound, &p->ge, *p->opcodeid, "partikkelset");
}
static int32_t partikkelset(CSOUND *csound, PARTIKKEL_SET *p)
{
IGN(csound);
PARTIKKEL *partikkel = p->ge->partikkel;
switch ((int32_t)*p->index) {
case 0:
partikkel->gainmaskindex = (uint32_t)*p->value;
break;
case 1:
partikkel->wavfreqstartindex = (uint32_t)*p->value;
break;
case 2:
partikkel->wavfreqendindex = (uint32_t)*p->value;
break;
case 3:
partikkel->fmampindex = (uint32_t)*p->value;
break;
case 4:
partikkel->channelmaskindex = (uint32_t)*p->value;
break;
case 5:
partikkel->wavgainindex = (uint32_t)*p->value;
break;
}
return OK;
}
static OENTRY partikkel_localops[] = {
{
"partikkel", sizeof(PARTIKKEL), TR, 3,
"ammmmmmm",
"xkiakiiikkkkikkiiaikikkkikkkkkiaaaakkkkioj",
(SUBR)partikkel_init,
(SUBR)partikkel
},
{
"partikkelsync", sizeof(PARTIKKEL_SYNC), TR, 3,
"am", "i",
(SUBR)partikkelsync_init,
(SUBR)partikkelsync
},
{
"partikkelget", sizeof(PARTIKKEL_GET), TR, 3,
"k", "ki",
(SUBR)partikkelget_init,
(SUBR)partikkelget,
(SUBR)NULL
},
{
"partikkelset", sizeof(PARTIKKEL_SET), TR, 3,
"", "kki",
(SUBR)partikkelset_init,
(SUBR)partikkelset,
(SUBR)NULL
}
};
LINKAGE_BUILTIN(partikkel_localops)
|