1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
|
/* pvscent.c:
Calculation of spectral centroid as Beauchamp
Copyright (c) John ffitch, 2005
Copyright (c) Alan OCinneide, 2005
Copyright (c) V Lazzarini, 2012
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
#include "pvs_ops.h"
#include "pstream.h"
typedef struct {
OPDS h;
MYFLT *ans;
PVSDAT *fin;
uint32 lastframe;
MYFLT old;
} PVSCENT;
static int32_t pvscentset(CSOUND *csound, PVSCENT *p)
{
*p->ans = FL(0.0);
p->lastframe = 0;
if (UNLIKELY(!((p->fin->format==PVS_AMP_FREQ) ||
(p->fin->format==PVS_AMP_PHASE))))
return csound->InitError(csound,
Str("pvscent: format must be amp-phase"
" or amp-freq.\n"));
return OK;
}
static int32_t pvscent(CSOUND *csound, PVSCENT *p)
{
int32 i,N = p->fin->N;
MYFLT c = FL(0.0);
MYFLT d = FL(0.0);
MYFLT j, binsize = CS_ESR/(MYFLT)N;
if (p->fin->sliding) {
CMPLX *fin = (CMPLX*) p->fin->frame.auxp;
int32_t NB = p->fin->NB;
for (i=0, j=FL(0.5)*binsize; i<NB; i++, j += binsize) {
c += fin[i].re*j;
d += fin[i].re;
}
}
else {
float *fin = (float *) p->fin->frame.auxp;
if (p->lastframe < p->fin->framecount) {
//printf("N=%d binsize=%f\n", N, binsize);
for (i=0,j=FL(0.5)*binsize; i<N+2; i+=2, j += binsize) {
c += fin[i]*j; /* This ignores phase */
d += fin[i];
//printf("%d (%f) sig=%f c=%f d=%f\n", i,j,fin[i],c,d);
}
p->lastframe = p->fin->framecount;
}
}
*p->ans = (d==FL(0.0) ? FL(0.0) : c/d);
return OK;
}
static int32_t pvsscent(CSOUND *csound, PVSCENT *p)
{
MYFLT *a = p->ans;
if (p->fin->sliding) {
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t n, nsmps = CS_KSMPS;
int32 i,N = p->fin->N;
MYFLT c = FL(0.0);
MYFLT d = FL(0.0);
MYFLT j, binsize = CS_ESR/(MYFLT)N;
int32_t NB = p->fin->NB;
if (UNLIKELY(offset)) memset(a, '\0', offset*sizeof(MYFLT));
if (UNLIKELY(early)) {
nsmps -= early;
memset(&a[nsmps], '\0', early*sizeof(MYFLT));
}
for (n=offset; n<nsmps; n++) {
CMPLX *fin = (CMPLX*) p->fin->frame.auxp + n*NB;
for (i=0,j=FL(0.5)*binsize; i<N+2; i+=2, j += binsize) {
c += j*fin[i].re; /* This ignores phase */
d += fin[i].re;
}
a[n] = (d==FL(0.0) ? FL(0.0) : c/d);
}
}
else {
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t n, nsmps = CS_KSMPS;
MYFLT old = p->old;
int32 i,N = p->fin->N;
MYFLT c = FL(0.0);
MYFLT d = FL(0.0);
MYFLT j, binsize = CS_ESR/(MYFLT)N;
float *fin = (float *) p->fin->frame.auxp;
nsmps -= early;
for (n=offset; n<nsmps; n++) {
if (p->lastframe < p->fin->framecount) {
for (i=0,j=FL(0.5)*binsize; i<N+2; i+=2, j += binsize) {
c += fin[i]*j; /* This ignores phase */
d += fin[i];
}
old = a[n] = (d==FL(0.0) ? FL(0.0) : c/d);
p->lastframe = p->fin->framecount;
}
else {
a[n] = old;
}
}
p->old = old;
}
return OK;
}
static int32_t pvsbandw(CSOUND *csound, PVSCENT *p)
{
int32 i,N = p->fin->N;
MYFLT c = FL(0.0);
MYFLT d = FL(0.0);
MYFLT j, binsize = CS_ESR/(MYFLT)N;
if (p->fin->sliding) {
CMPLX *fin = (CMPLX*) p->fin->frame.auxp;
int32_t NB = p->fin->NB;
MYFLT cd;
for (i=0, j=FL(0.5)*binsize; i<NB; i++, j += binsize) {
c += fin[i].re*j;
d += fin[i].re;
}
cd = (d==FL(0.0) ? FL(0.0) : c/d);
c = FL(0.0);
for (i=0,j=FL(0.5)*binsize; i<N+2; i+=2, j += binsize) {
c += fin[i].re*(j - cd)*(j - cd);
}
}
else {
float *fin = (float *) p->fin->frame.auxp;
if (p->lastframe < p->fin->framecount) {
// compute centroid
MYFLT cd;
for (i=0,j=FL(0.5)*binsize; i<N+2; i+=2, j += binsize) {
c += fin[i]*j; /* This ignores phase */
d += fin[i];
}
cd = (d==FL(0.0) ? FL(0.0) : c/d);
c = FL(0.0);
for (i=0,j=FL(0.5)*binsize; i<N+2; i+=2, j += binsize) {
c += fin[i]*(j - cd)*(j - cd);
}
p->lastframe = p->fin->framecount;
}
}
*p->ans = SQRT(c);
return OK;
}
typedef struct _cent {
OPDS h;
MYFLT *ans;
MYFLT *asig, *ktrig, *ifftsize;
uint32_t fsize, count;
MYFLT old;
void *setup;
AUXCH frame, windowed, win;
} CENT;
static int32_t cent_i(CSOUND *csound, CENT *p)
{
int32_t fftsize = *p->ifftsize;
p->count = 0;
p->fsize = 1;
while(fftsize >>= 1) p->fsize <<= 1;
if (p->fsize < *p->ifftsize) {
p->fsize <<= 1;
csound->Warning(csound,
Str("centroid requested fftsize = %.0f, actual = %d\n"),
*p->ifftsize, p->fsize);
}
if (p->frame.auxp == NULL || p->frame.size < p->fsize*sizeof(MYFLT))
csound->AuxAlloc(csound, p->fsize*sizeof(MYFLT), &p->frame);
if (p->windowed.auxp == NULL || p->windowed.size < p->fsize*sizeof(MYFLT))
csound->AuxAlloc(csound, p->fsize*sizeof(MYFLT), &p->windowed);
if (p->win.auxp == NULL || p->win.size < p->fsize*sizeof(MYFLT)) {
uint32_t i;
MYFLT *win;
csound->AuxAlloc(csound, p->fsize*sizeof(MYFLT), &p->win);
win = (MYFLT *) p->win.auxp;
for (i=0; i < p->fsize; i++)
win[i] = 0.5 - 0.5*cos(i*TWOPI/p->fsize);
}
p->old = 0;
memset(p->frame.auxp, 0, p->fsize*sizeof(MYFLT));
memset(p->windowed.auxp, 0, p->fsize*sizeof(MYFLT));
p->setup = csound->RealFFT2Setup(csound,p->fsize,FFT_FWD);
return OK;
}
static int32_t cent_k(CSOUND *csound, CENT *p)
{
uint32_t n = p->count, k;
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t i, nsmps = CS_KSMPS;
MYFLT *frame = (MYFLT *) p->frame.auxp, *asig = p->asig;
uint32_t fsize = (uint32_t)p->fsize;
if (UNLIKELY(early)) nsmps -= early;
for (i=offset; i < nsmps; i++){
frame[n] = asig[i];
if (n == fsize-1) {
n=0;
}
else n++;
}
if (*p->ktrig) {
MYFLT c = FL(0.0);
MYFLT d = FL(0.0);
MYFLT *windowed = (MYFLT *) p->windowed.auxp;
MYFLT *win = (MYFLT *) p->win.auxp;
MYFLT mag, cf, binsize = CS_ESR/(MYFLT)fsize;
for (i=0,k=n; i < fsize; i++){
windowed[i] = frame[k]*win[i];
if (k == fsize-1) k=0;
else k++;
}
csound->RealFFT2(csound, p->setup, windowed);
cf=FL(0.5)*binsize;
mag = fabs(windowed[0])/fsize;
c += mag*cf;
d += mag;
cf += binsize;
for (i=2; i < fsize; i+=2, cf += binsize) {
windowed[i] /= fsize;
windowed[i+1] /= fsize;
mag = hypot(windowed[i], windowed[i+1]);
c += mag*cf;
d += mag;
}
p->old = *p->ans = (d==FL(0.0) ? FL(0.0) : c/d);
} else *p->ans = p->old;
p->count = n;
return OK;
}
/* PVSPITCH opcode by Ala OCinneide */
typedef struct _pvspitch
{
/* OPDS data structure */
OPDS h;
/* Output */
MYFLT *kfreq;
MYFLT *kamp;
/* Inputs */
PVSDAT *fin;
MYFLT *ithreshold;
/* Internal arrays */
AUXCH peakfreq;
AUXCH inharmonic;
uint32 lastframe;
} PVSPITCH;
#if !defined(FALSE)
#define FALSE (0)
#endif
#if !defined(TRUE)
#define TRUE (!FALSE)
#endif
#define RoundNum(Number) (int32_t)MYFLT2LRND(Number)
/* Should one use remainder or drem ?? */
#define Remainder(Numerator, Denominator) \
Numerator/Denominator - (int32_t) (Numerator/Denominator)
int32_t pvspitch_init(CSOUND *csound, PVSPITCH *p)
{
/* Initialise frame count to zero. */
uint32_t size;
p->lastframe = 0;
if (UNLIKELY(p->fin->sliding))
return csound->InitError(csound, Str("SDFT case not implemented yet"));
size = sizeof(MYFLT)*(p->fin->N+2);
if (p->peakfreq.auxp == NULL || p->peakfreq.size < size)
csound->AuxAlloc(csound, size, &p->peakfreq);
if (p->inharmonic.auxp == NULL || p->inharmonic.size < size)
csound->AuxAlloc(csound, size, &p->inharmonic);
if (UNLIKELY(p->fin->format!=PVS_AMP_FREQ)) {
return csound->InitError(csound,
Str("PV Frames must be in AMP_FREQ format!\n"));
}
return OK;
}
int32_t pvspitch_process(CSOUND *csound, PVSPITCH *p)
{
/* Initialised inputs */
float *Frame = (float *) p->fin->frame.auxp;
MYFLT *PeakFreq = (MYFLT *) p->peakfreq.auxp;
MYFLT *inharmonic = (MYFLT *) p->inharmonic.auxp;
MYFLT Threshold = (MYFLT) *p->ithreshold;
int32_t fftsize = (int32_t) p->fin->N;
int32_t numBins = fftsize/2 + 1;
MYFLT f0Cand, Frac, Freq = FL(0.0);
int32_t i, j, P1, P2, maxPartial;
MYFLT lowHearThreshold = FL(20.0);
MYFLT Amp = FL(0.0);
int32_t Partial = 0;
int32_t numPeaks = 0;
int32_t maxAdj = 3;
int32_t Adj = FALSE;
int32_t PrevNotAdj = FALSE;
/* Un-normalise the threshold value */
Threshold *= csound->e0dbfs;
/* If a new frame is ready... */
if (p->lastframe < p->fin->framecount) {
/* Finds the peaks in the frame. */
for (i=1; i<(numBins-1) && numPeaks<numBins/2; i++) {
/* A peak is defined as being above the threshold and */
/* greater than both its neighbours... */
if (Frame[2*i] > Threshold &&
Frame[2*i] > Frame[2*(i-1)] &&
Frame[2*i] > Frame[2*(i+1)]) {
PeakFreq[numPeaks]=Frame[2*i+1];
numPeaks++;
i++; /* Impossible to have two peaks in a row, skip over the next. */
}
Amp += Frame[2*i];
}
Amp += Frame[0];
Amp += Frame[2*numBins];
Amp *= FL(0.5);
if (UNLIKELY(numPeaks==0)) {
/* If no peaks found return 0. */
Partial = 0;
}
else {
/* Threshold of hearing is 20 Hz, so no need to look beyond
there for the fundamental. */
maxPartial = (int32_t) (PeakFreq[0]/lowHearThreshold);
/* Calculates the inharmonicity for each fundamental candidate */
for (i=0; i<maxPartial && i < numBins/2; i++) {
inharmonic[i] = FL(0.0);
f0Cand = PeakFreq[0]/(i+1);
for (j=1; j<numPeaks; j++) {
Frac = Remainder(PeakFreq[j], f0Cand);
if (Frac > FL(0.5)) Frac = FL(1.0) - Frac;
Frac /= PeakFreq[j];
inharmonic[i]+=Frac;
}
/* Test for the adjacency of partials... */
for (j=0; j<numPeaks-1; j++) {
P1 = RoundNum(PeakFreq[j]/f0Cand);
P2 = RoundNum(PeakFreq[j+1]/f0Cand);
if (P2-P1<maxAdj && P2-P1!=0) {
Adj = TRUE;
break;
}
else Adj = FALSE;
}
/* Search for the fundamental with the least inharmonicity */
if (i==0 ||
(i>0 && inharmonic[i]<inharmonic[Partial-1]) ||
(i>0 && PrevNotAdj && Adj)) {
/* The best candidate so far... */
if (Adj) {
Partial = i+1;
PrevNotAdj = FALSE;
}
else if (i==0) {
Partial = i+1;
PrevNotAdj = TRUE;
}
else PrevNotAdj = TRUE;
}
}
}
/* Output the appropriate frequency values. */
if (LIKELY(Partial!=0)) {
f0Cand = PeakFreq[0]/Partial;
/* Average frequency between partials */
for (i=0; i<numPeaks; i++) {
//f0Cand cannot be zero unless PeakFreq is zero which cannot be
Freq += PeakFreq[i] / RoundNum(PeakFreq[i]/f0Cand);
}
Freq /= numPeaks;
*p->kfreq = Freq;
}
else {
*p->kfreq = FL(0.0);
}
*p->kamp = Amp;
/* Update the frame count */
p->lastframe = p->fin->framecount;
}
return OK;
}
static OENTRY localops[] = {
{ "pvscent", sizeof(PVSCENT), 0, 3, "k", "f",
(SUBR)pvscentset, (SUBR)pvscent },
{ "pvsbandwidth", sizeof(PVSCENT), 0, 3, "k", "f",
(SUBR)pvscentset, (SUBR)pvsbandw },
{ "pvscent", sizeof(PVSCENT), 0, 3, "a", "f",
(SUBR)pvscentset, (SUBR)pvsscent },
{ "centroid", sizeof(CENT), 0, 3, "k", "aki", (SUBR)cent_i, (SUBR)cent_k, NULL},
{ "pvspitch", sizeof(PVSPITCH), 0, 3, "kk", "fk",
(SUBR)pvspitch_init, (SUBR)pvspitch_process, NULL}
};
int32_t pvscent_init_(CSOUND *csound)
{
return csound->AppendOpcodes(csound, &(localops[0]),
(int32_t
) (sizeof(localops) / sizeof(OENTRY)));
}
|