1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
|
/*
reverbsc.c:
Copyright 1999, 2005 Sean Costello and Istvan Varga
8 delay line FDN reverb, with feedback matrix based upon
physical modeling scattering junction of 8 lossless waveguides
of equal characteristic impedance. Based on Julius O. Smith III,
"A New Approach to Digital Reverberation using Closed Waveguide
Networks," Proceedings of the International Computer Music
Conference 1985, p. 47-53 (also available as a seperate
publication from CCRMA), as well as some more recent papers by
Smith and others.
Csound orchestra version coded by Sean Costello, October 1999
C implementation (C) 2005 Istvan Varga
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
#include "stdopcod.h"
#include <math.h>
#define DEFAULT_SRATE 44100.0
#define MIN_SRATE 5000.0
#define MAX_SRATE 1000000.0
#define MAX_PITCHMOD 20.0
#define DELAYPOS_SHIFT 28
#define DELAYPOS_SCALE 0x10000000
#define DELAYPOS_MASK 0x0FFFFFFF
/* reverbParams[n][0] = delay time (in seconds) */
/* reverbParams[n][1] = random variation in delay time (in seconds) */
/* reverbParams[n][2] = random variation frequency (in 1/sec) */
/* reverbParams[n][3] = random seed (0 - 32767) */
static const double reverbParams[8][4] = {
{ (2473.0 / DEFAULT_SRATE), 0.0010, 3.100, 1966.0 },
{ (2767.0 / DEFAULT_SRATE), 0.0011, 3.500, 29491.0 },
{ (3217.0 / DEFAULT_SRATE), 0.0017, 1.110, 22937.0 },
{ (3557.0 / DEFAULT_SRATE), 0.0006, 3.973, 9830.0 },
{ (3907.0 / DEFAULT_SRATE), 0.0010, 2.341, 20643.0 },
{ (4127.0 / DEFAULT_SRATE), 0.0011, 1.897, 22937.0 },
{ (2143.0 / DEFAULT_SRATE), 0.0017, 0.891, 29491.0 },
{ (1933.0 / DEFAULT_SRATE), 0.0006, 3.221, 14417.0 }
};
static const double outputGain = 0.35;
static const double jpScale = 0.25;
typedef struct {
int32_t writePos;
int32_t bufferSize;
int32_t readPos;
int32_t readPosFrac;
int32_t readPosFrac_inc;
int32_t dummy;
int32_t seedVal;
int32_t randLine_cnt;
double filterState;
MYFLT buf[1];
} delayLine;
typedef struct {
OPDS h;
MYFLT *aoutL, *aoutR, *ainL, *ainR, *kFeedBack, *kLPFreq;
MYFLT *iSampleRate, *iPitchMod, *iSkipInit;
double sampleRate;
double dampFact;
MYFLT prv_LPFreq;
int32_t initDone;
delayLine *delayLines[8];
AUXCH auxData;
} SC_REVERB;
static int32_t delay_line_max_samples(SC_REVERB *p, int32_t n)
{
double maxDel;
maxDel = reverbParams[n][0];
maxDel += (reverbParams[n][1] * (double) *(p->iPitchMod) * 1.125);
return (int32_t) (maxDel * p->sampleRate + 16.5);
}
static int32_t delay_line_bytes_alloc(SC_REVERB *p, int32_t n)
{
int32_t nBytes;
nBytes = (int32_t) sizeof(delayLine) - (int32_t) sizeof(MYFLT);
nBytes += (delay_line_max_samples(p, n) * (int32_t) sizeof(MYFLT));
nBytes = (nBytes + 15) & (~15);
return nBytes;
}
static void next_random_lineseg(SC_REVERB *p, delayLine *lp, int32_t n)
{
double prvDel, nxtDel, phs_incVal;
/* update random seed */
if (lp->seedVal < 0)
lp->seedVal += 0x10000;
lp->seedVal = (lp->seedVal * 15625 + 1) & 0xFFFF;
if (lp->seedVal >= 0x8000)
lp->seedVal -= 0x10000;
/* length of next segment in samples */
lp->randLine_cnt = (int32_t) ((p->sampleRate / reverbParams[n][2]) + 0.5);
prvDel = (double) lp->writePos;
prvDel -= ((double) lp->readPos
+ ((double) lp->readPosFrac / (double) DELAYPOS_SCALE));
while (prvDel < 0.0)
prvDel += (double) lp->bufferSize;
prvDel = prvDel / p->sampleRate; /* previous delay time in seconds */
nxtDel = (double) lp->seedVal * reverbParams[n][1] / 32768.0;
/* next delay time in seconds */
nxtDel = reverbParams[n][0] + (nxtDel * (double) *(p->iPitchMod));
/* calculate phase increment per sample */
phs_incVal = (prvDel - nxtDel) / (double) lp->randLine_cnt;
phs_incVal = phs_incVal * p->sampleRate + 1.0;
lp->readPosFrac_inc = (int32_t) (phs_incVal * DELAYPOS_SCALE + 0.5);
}
static void init_delay_line(SC_REVERB *p, delayLine *lp, int32_t n)
{
double readPos;
/* int32_t i; */
/* calculate length of delay line */
lp->bufferSize = delay_line_max_samples(p, n);
lp->dummy = 0;
lp->writePos = 0;
/* set random seed */
lp->seedVal = (int32_t) (reverbParams[n][3] + 0.5);
/* set initial delay time */
readPos = (double) lp->seedVal * reverbParams[n][1] / 32768;
readPos = reverbParams[n][0] + (readPos * (double) *(p->iPitchMod));
readPos = (double) lp->bufferSize - (readPos * p->sampleRate);
lp->readPos = (int32_t) readPos;
readPos = (readPos - (double) lp->readPos) * (double) DELAYPOS_SCALE;
lp->readPosFrac = (int32_t) (readPos + 0.5);
/* initialise first random line segment */
next_random_lineseg(p, lp, n);
/* clear delay line to zero */
lp->filterState = 0.0;
memset(lp->buf, 0, sizeof(MYFLT)*lp->bufferSize);
/* for (i = 0; i < lp->bufferSize; i++) */
/* lp->buf[i] = FL(0.0); */
}
static int32_t sc_reverb_init(CSOUND *csound, SC_REVERB *p)
{
int32_t i;
int32_t nBytes;
/* check for valid parameters */
if (UNLIKELY(*(p->iSampleRate) <= FL(0.0)))
p->sampleRate = (double) CS_ESR;
else
p->sampleRate = (double) *(p->iSampleRate);
if (UNLIKELY(p->sampleRate < MIN_SRATE || p->sampleRate > MAX_SRATE)) {
return csound->InitError(csound,
Str("reverbsc: sample rate is out of range"));
}
if (UNLIKELY(*(p->iPitchMod) < FL(0.0) ||
*(p->iPitchMod) > (MYFLT) MAX_PITCHMOD)) {
return csound->InitError(csound,
Str("reverbsc: invalid pitch modulation factor"));
}
/* calculate the number of bytes to allocate */
nBytes = 0;
for (i = 0; i < 8; i++)
nBytes += delay_line_bytes_alloc(p, i);
if (nBytes != (int32_t)p->auxData.size)
csound->AuxAlloc(csound, (size_t) nBytes, &(p->auxData));
else if (p->initDone && *(p->iSkipInit) != FL(0.0))
return OK; /* skip initialisation if requested */
/* set up delay lines */
nBytes = 0;
for (i = 0; i < 8; i++) {
p->delayLines[i] = (delayLine*) ((unsigned char*) (p->auxData.auxp)
+ (int32_t) nBytes);
init_delay_line(p, p->delayLines[i], i);
nBytes += delay_line_bytes_alloc(p, i);
}
p->dampFact = 1.0;
p->prv_LPFreq = FL(0.0);
p->initDone = 1;
return OK;
}
static int32_t sc_reverb_perf(CSOUND *csound, SC_REVERB *p)
{
double ainL, ainR, aoutL, aoutR;
double vm1, v0, v1, v2, am1, a0, a1, a2, frac;
delayLine *lp;
int32_t readPos;
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t i, n, nsmps = CS_KSMPS;
int32_t bufferSize; /* Local copy */
double dampFact = p->dampFact;
if (UNLIKELY(p->initDone <= 0)) goto err1;
/* calculate tone filter coefficient if frequency changed */
if (*(p->kLPFreq) != p->prv_LPFreq) {
p->prv_LPFreq = *(p->kLPFreq);
dampFact = 2.0 - cos(p->prv_LPFreq * TWOPI / p->sampleRate);
dampFact = p->dampFact = dampFact - sqrt(dampFact * dampFact - 1.0);
}
if (UNLIKELY(offset)) {
memset(p->aoutL, '\0', offset*sizeof(MYFLT));
memset(p->aoutR, '\0', offset*sizeof(MYFLT));
}
if (UNLIKELY(early)) {
nsmps -= early;
memset(&p->aoutL[nsmps], '\0', early*sizeof(MYFLT));
memset(&p->aoutR[nsmps], '\0', early*sizeof(MYFLT));
}
/* update delay lines */
for (i = offset; i < nsmps; i++) {
/* calculate "resultant junction pressure" and mix to input signals */
ainL = aoutL = aoutR = 0.0;
for (n = 0; n < 8; n++)
ainL += p->delayLines[n]->filterState;
ainL *= jpScale;
ainR = ainL + (double) p->ainR[i];
ainL = ainL + (double) p->ainL[i];
/* loop through all delay lines */
for (n = 0; n < 8; n++) {
lp = p->delayLines[n];
bufferSize = lp->bufferSize;
/* send input signal and feedback to delay line */
lp->buf[lp->writePos] = (MYFLT) ((n & 1 ? ainR : ainL)
- lp->filterState);
if (UNLIKELY(++lp->writePos >= bufferSize))
lp->writePos -= bufferSize;
/* read from delay line with cubic interpolation */
if (lp->readPosFrac >= DELAYPOS_SCALE) {
lp->readPos += (lp->readPosFrac >> DELAYPOS_SHIFT);
lp->readPosFrac &= DELAYPOS_MASK;
}
if (UNLIKELY(lp->readPos >= bufferSize))
lp->readPos -= bufferSize;
readPos = lp->readPos;
frac = (double) lp->readPosFrac * (1.0 / (double) DELAYPOS_SCALE);
/* calculate interpolation coefficients */
a2 = frac * frac; a2 -= 1.0; a2 *= (1.0 / 6.0);
a1 = frac; a1 += 1.0; a1 *= 0.5; am1 = a1 - 1.0;
a0 = 3.0 * a2; a1 -= a0; am1 -= a2; a0 -= frac;
/* read four samples for interpolation */
if (LIKELY(readPos > 0 && readPos < (bufferSize - 2))) {
vm1 = (double) (lp->buf[readPos - 1]);
v0 = (double) (lp->buf[readPos]);
v1 = (double) (lp->buf[readPos + 1]);
v2 = (double) (lp->buf[readPos + 2]);
}
else {
/* at buffer wrap-around, need to check index */
if (--readPos < 0) readPos += bufferSize;
vm1 = (double) lp->buf[readPos];
if (++readPos >= bufferSize) readPos -= bufferSize;
v0 = (double) lp->buf[readPos];
if (++readPos >= bufferSize) readPos -= bufferSize;
v1 = (double) lp->buf[readPos];
if (++readPos >= bufferSize) readPos -= bufferSize;
v2 = (double) lp->buf[readPos];
}
v0 = (am1 * vm1 + a0 * v0 + a1 * v1 + a2 * v2) * frac + v0;
/* update buffer read position */
lp->readPosFrac += lp->readPosFrac_inc;
/* apply feedback gain and lowpass filter */
v0 *= (double) *(p->kFeedBack);
v0 = (lp->filterState - v0) * dampFact + v0;
lp->filterState = v0;
/* mix to output */
if (n & 1)
aoutR += v0;
else
aoutL += v0;
/* start next random line segment if current one has reached endpoint */
if (--(lp->randLine_cnt) <= 0)
next_random_lineseg(p, lp, n);
}
p->aoutL[i] = (MYFLT) (aoutL * outputGain);
p->aoutR[i] = (MYFLT) (aoutR * outputGain);
}
return OK;
err1:
return csound->PerfError(csound, &(p->h),
Str("reverbsc: not initialised"));
}
/* module interface functions */
int32_t reverbsc_init_(CSOUND *csound)
{
return csound->AppendOpcode(csound, "reverbsc",
(int32_t) sizeof(SC_REVERB), 0, 3, "aa", "aakkjpo",
(int32_t (*)(CSOUND *, void *)) sc_reverb_init,
(int32_t (*)(CSOUND *, void *)) sc_reverb_perf,
NULL);
}
|