File: reverbsc.c

package info (click to toggle)
csound 1%3A6.18.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 63,220 kB
  • sloc: ansic: 192,643; cpp: 14,149; javascript: 9,654; objc: 9,181; python: 3,376; java: 3,337; sh: 1,840; yacc: 1,255; xml: 985; perl: 635; lisp: 411; tcl: 341; lex: 217; makefile: 128
file content (320 lines) | stat: -rw-r--r-- 11,981 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/*
    reverbsc.c:

    Copyright 1999, 2005 Sean Costello and Istvan Varga

    8 delay line FDN reverb, with feedback matrix based upon
    physical modeling scattering junction of 8 lossless waveguides
    of equal characteristic impedance. Based on Julius O. Smith III,
    "A New Approach to Digital Reverberation using Closed Waveguide
    Networks," Proceedings of the International Computer Music
    Conference 1985, p. 47-53 (also available as a seperate
    publication from CCRMA), as well as some more recent papers by
    Smith and others.

    Csound orchestra version coded by Sean Costello, October 1999

    C implementation (C) 2005 Istvan Varga

    This file is part of Csound.

    The Csound Library is free software; you can redistribute it
    and/or modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    Csound is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with Csound; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
    02110-1301 USA
*/

#include "stdopcod.h"
#include <math.h>

#define DEFAULT_SRATE   44100.0
#define MIN_SRATE       5000.0
#define MAX_SRATE       1000000.0
#define MAX_PITCHMOD    20.0
#define DELAYPOS_SHIFT  28
#define DELAYPOS_SCALE  0x10000000
#define DELAYPOS_MASK   0x0FFFFFFF

/* reverbParams[n][0] = delay time (in seconds)                     */
/* reverbParams[n][1] = random variation in delay time (in seconds) */
/* reverbParams[n][2] = random variation frequency (in 1/sec)       */
/* reverbParams[n][3] = random seed (0 - 32767)                     */

static const double reverbParams[8][4] = {
    { (2473.0 / DEFAULT_SRATE), 0.0010, 3.100,  1966.0 },
    { (2767.0 / DEFAULT_SRATE), 0.0011, 3.500, 29491.0 },
    { (3217.0 / DEFAULT_SRATE), 0.0017, 1.110, 22937.0 },
    { (3557.0 / DEFAULT_SRATE), 0.0006, 3.973,  9830.0 },
    { (3907.0 / DEFAULT_SRATE), 0.0010, 2.341, 20643.0 },
    { (4127.0 / DEFAULT_SRATE), 0.0011, 1.897, 22937.0 },
    { (2143.0 / DEFAULT_SRATE), 0.0017, 0.891, 29491.0 },
    { (1933.0 / DEFAULT_SRATE), 0.0006, 3.221, 14417.0 }
};

static const double outputGain  = 0.35;
static const double jpScale     = 0.25;

typedef struct {
    int32_t         writePos;
    int32_t         bufferSize;
    int32_t         readPos;
    int32_t         readPosFrac;
    int32_t         readPosFrac_inc;
    int32_t         dummy;
    int32_t         seedVal;
    int32_t         randLine_cnt;
    double      filterState;
    MYFLT       buf[1];
} delayLine;

typedef struct {
    OPDS        h;
    MYFLT       *aoutL, *aoutR, *ainL, *ainR, *kFeedBack, *kLPFreq;
    MYFLT       *iSampleRate, *iPitchMod, *iSkipInit;
    double      sampleRate;
    double      dampFact;
    MYFLT       prv_LPFreq;
    int32_t         initDone;
    delayLine   *delayLines[8];
    AUXCH       auxData;
} SC_REVERB;

static int32_t delay_line_max_samples(SC_REVERB *p, int32_t n)
{
    double  maxDel;

    maxDel = reverbParams[n][0];
    maxDel += (reverbParams[n][1] * (double) *(p->iPitchMod) * 1.125);
    return (int32_t) (maxDel * p->sampleRate + 16.5);
}

static int32_t delay_line_bytes_alloc(SC_REVERB *p, int32_t n)
{
    int32_t nBytes;

    nBytes = (int32_t) sizeof(delayLine) - (int32_t) sizeof(MYFLT);
    nBytes += (delay_line_max_samples(p, n) * (int32_t) sizeof(MYFLT));
    nBytes = (nBytes + 15) & (~15);
    return nBytes;
}

static void next_random_lineseg(SC_REVERB *p, delayLine *lp, int32_t n)
{
    double  prvDel, nxtDel, phs_incVal;

    /* update random seed */
    if (lp->seedVal < 0)
      lp->seedVal += 0x10000;
    lp->seedVal = (lp->seedVal * 15625 + 1) & 0xFFFF;
    if (lp->seedVal >= 0x8000)
      lp->seedVal -= 0x10000;
    /* length of next segment in samples */
    lp->randLine_cnt = (int32_t) ((p->sampleRate / reverbParams[n][2]) + 0.5);
    prvDel = (double) lp->writePos;
    prvDel -= ((double) lp->readPos
               + ((double) lp->readPosFrac / (double) DELAYPOS_SCALE));
    while (prvDel < 0.0)
      prvDel += (double) lp->bufferSize;
    prvDel = prvDel / p->sampleRate;    /* previous delay time in seconds */
    nxtDel = (double) lp->seedVal * reverbParams[n][1] / 32768.0;
    /* next delay time in seconds */
    nxtDel = reverbParams[n][0] + (nxtDel * (double) *(p->iPitchMod));
    /* calculate phase increment per sample */
    phs_incVal = (prvDel - nxtDel) / (double) lp->randLine_cnt;
    phs_incVal = phs_incVal * p->sampleRate + 1.0;
    lp->readPosFrac_inc = (int32_t) (phs_incVal * DELAYPOS_SCALE + 0.5);
}

static void init_delay_line(SC_REVERB *p, delayLine *lp, int32_t n)
{
    double  readPos;
    /* int32_t     i; */

    /* calculate length of delay line */
    lp->bufferSize = delay_line_max_samples(p, n);
    lp->dummy = 0;
    lp->writePos = 0;
    /* set random seed */
    lp->seedVal = (int32_t) (reverbParams[n][3] + 0.5);
    /* set initial delay time */
    readPos = (double) lp->seedVal * reverbParams[n][1] / 32768;
    readPos = reverbParams[n][0] + (readPos * (double) *(p->iPitchMod));
    readPos = (double) lp->bufferSize - (readPos * p->sampleRate);
    lp->readPos = (int32_t) readPos;
    readPos = (readPos - (double) lp->readPos) * (double) DELAYPOS_SCALE;
    lp->readPosFrac = (int32_t) (readPos + 0.5);
    /* initialise first random line segment */
    next_random_lineseg(p, lp, n);
    /* clear delay line to zero */
    lp->filterState = 0.0;
    memset(lp->buf, 0, sizeof(MYFLT)*lp->bufferSize);
    /* for (i = 0; i < lp->bufferSize; i++) */
    /*   lp->buf[i] = FL(0.0); */
}

static int32_t sc_reverb_init(CSOUND *csound, SC_REVERB *p)
{
    int32_t i;
    int32_t nBytes;

    /* check for valid parameters */
    if (UNLIKELY(*(p->iSampleRate) <= FL(0.0)))
      p->sampleRate = (double) CS_ESR;
    else
      p->sampleRate = (double) *(p->iSampleRate);
    if (UNLIKELY(p->sampleRate < MIN_SRATE || p->sampleRate > MAX_SRATE)) {
      return csound->InitError(csound,
                               Str("reverbsc: sample rate is out of range"));
    }
    if (UNLIKELY(*(p->iPitchMod) < FL(0.0) ||
                 *(p->iPitchMod) > (MYFLT) MAX_PITCHMOD)) {
      return csound->InitError(csound,
                               Str("reverbsc: invalid pitch modulation factor"));
    }
    /* calculate the number of bytes to allocate */
    nBytes = 0;
    for (i = 0; i < 8; i++)
      nBytes += delay_line_bytes_alloc(p, i);
    if (nBytes != (int32_t)p->auxData.size)
      csound->AuxAlloc(csound, (size_t) nBytes, &(p->auxData));
    else if (p->initDone && *(p->iSkipInit) != FL(0.0))
      return OK;    /* skip initialisation if requested */
    /* set up delay lines */
    nBytes = 0;
    for (i = 0; i < 8; i++) {
      p->delayLines[i] = (delayLine*) ((unsigned char*) (p->auxData.auxp)
                                       + (int32_t) nBytes);
      init_delay_line(p, p->delayLines[i], i);
      nBytes += delay_line_bytes_alloc(p, i);
    }
    p->dampFact = 1.0;
    p->prv_LPFreq = FL(0.0);
    p->initDone = 1;

    return OK;
}

static int32_t sc_reverb_perf(CSOUND *csound, SC_REVERB *p)
{
    double    ainL, ainR, aoutL, aoutR;
    double    vm1, v0, v1, v2, am1, a0, a1, a2, frac;
    delayLine *lp;
    int32_t       readPos;
    uint32_t offset = p->h.insdshead->ksmps_offset;
    uint32_t early  = p->h.insdshead->ksmps_no_end;
    uint32_t i, n, nsmps = CS_KSMPS;
    int32_t       bufferSize; /* Local copy */
    double    dampFact = p->dampFact;

    if (UNLIKELY(p->initDone <= 0)) goto err1;
    /* calculate tone filter coefficient if frequency changed */
    if (*(p->kLPFreq) != p->prv_LPFreq) {
      p->prv_LPFreq = *(p->kLPFreq);
      dampFact = 2.0 - cos(p->prv_LPFreq * TWOPI / p->sampleRate);
      dampFact = p->dampFact = dampFact - sqrt(dampFact * dampFact - 1.0);
    }
    if (UNLIKELY(offset)) {
      memset(p->aoutL, '\0', offset*sizeof(MYFLT));
      memset(p->aoutR, '\0', offset*sizeof(MYFLT));
    }
    if (UNLIKELY(early)) {
      nsmps -= early;
      memset(&p->aoutL[nsmps], '\0', early*sizeof(MYFLT));
      memset(&p->aoutR[nsmps], '\0', early*sizeof(MYFLT));
    }
    /* update delay lines */
    for (i = offset; i < nsmps; i++) {
      /* calculate "resultant junction pressure" and mix to input signals */
      ainL = aoutL = aoutR = 0.0;
      for (n = 0; n < 8; n++)
        ainL += p->delayLines[n]->filterState;
      ainL *= jpScale;
      ainR = ainL + (double) p->ainR[i];
      ainL = ainL + (double) p->ainL[i];
      /* loop through all delay lines */
      for (n = 0; n < 8; n++) {
        lp = p->delayLines[n];
        bufferSize = lp->bufferSize;
        /* send input signal and feedback to delay line */
        lp->buf[lp->writePos] = (MYFLT) ((n & 1 ? ainR : ainL)
                                         - lp->filterState);
        if (UNLIKELY(++lp->writePos >= bufferSize))
          lp->writePos -= bufferSize;
        /* read from delay line with cubic interpolation */
        if (lp->readPosFrac >= DELAYPOS_SCALE) {
          lp->readPos += (lp->readPosFrac >> DELAYPOS_SHIFT);
          lp->readPosFrac &= DELAYPOS_MASK;
        }
        if (UNLIKELY(lp->readPos >= bufferSize))
          lp->readPos -= bufferSize;
        readPos = lp->readPos;
        frac = (double) lp->readPosFrac * (1.0 / (double) DELAYPOS_SCALE);
        /* calculate interpolation coefficients */
        a2 = frac * frac; a2 -= 1.0; a2 *= (1.0 / 6.0);
        a1 = frac; a1 += 1.0; a1 *= 0.5; am1 = a1 - 1.0;
        a0 = 3.0 * a2; a1 -= a0; am1 -= a2; a0 -= frac;
        /* read four samples for interpolation */
        if (LIKELY(readPos > 0 && readPos < (bufferSize - 2))) {
          vm1 = (double) (lp->buf[readPos - 1]);
          v0  = (double) (lp->buf[readPos]);
          v1  = (double) (lp->buf[readPos + 1]);
          v2  = (double) (lp->buf[readPos + 2]);
        }
        else {
          /* at buffer wrap-around, need to check index */
          if (--readPos < 0) readPos += bufferSize;
          vm1 = (double) lp->buf[readPos];
          if (++readPos >= bufferSize) readPos -= bufferSize;
          v0 = (double) lp->buf[readPos];
          if (++readPos >= bufferSize) readPos -= bufferSize;
          v1 = (double) lp->buf[readPos];
          if (++readPos >= bufferSize) readPos -= bufferSize;
          v2 = (double) lp->buf[readPos];
        }
        v0 = (am1 * vm1 + a0 * v0 + a1 * v1 + a2 * v2) * frac + v0;
        /* update buffer read position */
        lp->readPosFrac += lp->readPosFrac_inc;
        /* apply feedback gain and lowpass filter */
        v0 *= (double) *(p->kFeedBack);
        v0 = (lp->filterState - v0) * dampFact + v0;
        lp->filterState = v0;
        /* mix to output */
        if (n & 1)
          aoutR += v0;
        else
          aoutL += v0;
        /* start next random line segment if current one has reached endpoint */
        if (--(lp->randLine_cnt) <= 0)
          next_random_lineseg(p, lp, n);
      }
      p->aoutL[i] = (MYFLT) (aoutL * outputGain);
      p->aoutR[i] = (MYFLT) (aoutR * outputGain);
    }

    return OK;
 err1:
    return csound->PerfError(csound, &(p->h),
                             Str("reverbsc: not initialised"));
}

/* module interface functions */

int32_t reverbsc_init_(CSOUND *csound)
{
    return csound->AppendOpcode(csound, "reverbsc",
                                (int32_t) sizeof(SC_REVERB), 0, 3, "aa", "aakkjpo",
                                (int32_t (*)(CSOUND *, void *)) sc_reverb_init,
                                (int32_t (*)(CSOUND *, void *)) sc_reverb_perf,
                                NULL);
}