1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162
|
/*
shaker.c:
Copyright (C) 1996, 1997 Perry Cook, John ffitch
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
/********************************************************/
/* Maracha SImulation by Perry R. Cook, 1996 */
/********************************************************/
/********************************************************/
/* In real life, each grain has an individual
sound and envelope, but if you buy the
notion that each sound is independent
noise, the sum of a bunch of independent
exponentially decaying enveloped noises
is a single exponentially decaying enveloped
noise. shakeEnergy is an exponentially
decaying, but reexcitable by shaking, energy
expressing how loud a single collision will be.
This code would implement individual grain envelopes
if (random(8) < 1) {
noises[which] = 1024 * shakeEnergy;
which += 1;
if (which==MAX) which = 0;
}
input = 0.0;
for (i=0;i<MAX;i++) {
input += noises[i] * noise_tick();
noises[i] *= COLL_DECAY;
}
But we're smarter than that!!! See below
*/
// #include "csdl.h"
#include "csoundCore.h"
#include "shaker.h"
int32_t shakerset(CSOUND *csound, SHAKER *p)
{
MYFLT amp = (*p->amp)*AMP_RSCALE; /* Normalise */
p->shake_speed = FL(0.0008) + (amp * FL(0.0004));
make_BiQuad(&p->filter);
make_ADSR(&p->envelope);
p->res_freq = FL(3200.0);
BiQuad_setFreqAndReson(p->filter, p->res_freq, FL(0.96));
BiQuad_setEqualGainZeroes(p->filter);
BiQuad_setGain(p->filter, FL(1.0));
p->shakeEnergy = FL(0.0);
p->noiseGain = FL(0.0);
p->coll_damp = FL(0.95);
/* p->shake_damp = 0.999f; */
/* p->num_beans = 8; */
ADSR_setAll(csound, &p->envelope,
p->shake_speed, p->shake_speed, FL(0.0), p->shake_speed);
p->num_beans = (int32_t)*p->beancount;
if (p->num_beans<1) p->num_beans = 1;
p->wait_time = 0x7FFFFFFE / p->num_beans;
p->gain_norm = FL(0.0005);
p->shake_num = (int32_t)*p->times;
ADSR_keyOn(&p->envelope);
p->kloop = (int32_t)(p->h.insdshead->offtim * CS_EKR)
- (int32_t)(CS_EKR * *p->dettack);
p->freq = -FL(1.0); /* So will get changed */
return OK;
}
int32_t shaker(CSOUND *csound, SHAKER *p)
{
MYFLT *ar = p->ar;
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t n, nsmps = CS_KSMPS;
MYFLT amp = (*p->amp)*AMP_RSCALE; /* Normalise */
MYFLT shake = amp + amp;
MYFLT damp = *p->shake_damp;
MYFLT gain = p->gain_norm;
MYFLT ngain = p->noiseGain;
MYFLT sEnergy = p->shakeEnergy;
MYFLT shake_speed = FL(0.0008) + amp * FL(0.0004);
if (p->freq != *p->kfreq)
BiQuad_setFreqAndReson(p->filter, p->freq = *p->kfreq, FL(0.96));
if (p->num_beans != (int32_t)*p->beancount) { /* Bean Count */
p->num_beans = (int32_t
)*p->beancount;
p->wait_time = 0x7FFFFFFE / p->num_beans;
}
if (shake_speed != p->shake_speed) {
p->shake_speed = shake_speed;
ADSR_setAll(csound,
&p->envelope, shake_speed, shake_speed, FL(0.0), shake_speed);
}
if (p->kloop>0 && p->h.insdshead->relesing) p->kloop=1;
if ((--p->kloop) == 0) {
p->shake_num = 0;
}
if (UNLIKELY(offset)) memset(ar, '\0', offset*sizeof(MYFLT));
if (UNLIKELY(early)) {
nsmps -= early;
memset(&ar[nsmps], '\0', early*sizeof(MYFLT));
}
gain *= p->num_beans; /* Save work in loop */
for (n=offset; n<nsmps; n++) {
MYFLT lastOutput;
MYFLT temp;
ADSR_tick(&p->envelope);
temp = p->envelope.value * shake;
if (p->shake_num>0) {
if (p->envelope.state==SUSTAIN) {
if (p->shake_num < 64)
p->shake_num -= 1;
ADSR_keyOn(&p->envelope);
}
}
if (temp > sEnergy)
sEnergy = temp;
sEnergy *= damp; /* Exponential System Decay */
/* There's Roughly Constant Probablity of a Collision, and */
/* Energy of Each Collision is Weighted by Exponentially */
/* Decaying System Energy. All add together for total */
/* exponentially decaying sound energy. */
if (csound->Rand31(&(csound->randSeed1)) <= p->wait_time) {
ngain += gain * sEnergy;
}
/* Actual Sound is Random */
lastOutput = ngain * ((MYFLT) csound->Rand31(&(csound->randSeed1))
- FL(1073741823.5))
* (MYFLT) (1.0 / 1073741823.0);
/* Each (all) event(s) decay(s) exponentially */
ngain *= p->coll_damp;
lastOutput = BiQuad_tick(&p->filter, lastOutput);
ar[n] = lastOutput * AMP_SCALE * FL(7.0); /* As too quiet */
}
p->noiseGain = ngain;
p->shakeEnergy = sEnergy;
return OK;
}
|