1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
|
/* SQUINEWAVE.C: Sine-Square-Pulse-Saw oscillator
* by rasmus ekman 2017, for Csound.
* This code is released under the Csound license,
* GNU Lesser General Public License version 2.1.
*/
/*
Copyright (C) 2017 rasmus ekman 2017
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
#include <math.h>
#include "csoundCore.h"
/* ================================================================== */
typedef struct {
OPDS h;
MYFLT *aout, *async_out, *acps, *aclip, *askew, *async_in, *iminsweep, *iphase;
// phase and warped_phase range 0-2.
//This makes skew/clip into simple proportions
double phase;
double warped_phase;
double hardsync_phase;
double hardsync_inc;
// Const inited from environment
double Min_Sweep;
double Maxphase_By_sr;
double Max_Warp_Freq;
MYFLT *sync_sig; // holds async_in if a-rate
int32_t init_phase;
} SQUINEWAVE;
/* ================================================================== */
static inline int32_t find_sync(const MYFLT* sync_sig, const uint32_t first,
const uint32_t last)
{
uint32_t i;
if (sync_sig == 0)
return -1;
for (i = first; i < last; ++i) {
if (sync_sig[i] >= (MYFLT)1)
return i;
}
return -1;
}
/* ================================================================== */
static void hardsync_init(SQUINEWAVE *p, const double freq,
const double warped_phase)
{
if (p->hardsync_phase)
return;
// If we're in last flat part, we're just done now
if (warped_phase == 2.0) {
p->phase = 2.0;
return;
}
if (freq > p->Max_Warp_Freq)
return;
p->hardsync_inc = (PI / p->Min_Sweep);
p->hardsync_phase = p->hardsync_inc * 0.5;
}
/* ================================================================== */
static inline MYFLT Clamp(const MYFLT x, const MYFLT minval, const MYFLT maxval) {
return (x < minval) ? minval : (x > maxval) ? maxval : x;
}
/* ================================================================== */
int32_t squinewave_init(CSOUND* csound, SQUINEWAVE *p)
{
const double sr = csound->GetSr(csound);
// Skip setting phase only if we have been inited at least once
p->init_phase = (*p->iphase < 0 && p->Min_Sweep > 1.0) ? 0 : 1;
p->Min_Sweep = *p->iminsweep;
// Allow range 4-sr/100
if (p->Min_Sweep < 4.0 || p->Min_Sweep > sr * 0.01) {
const int32_t minsweep_default = (int32_t)Clamp(sr / 3000.0, 8.0, sr * 0.01);
if (p->Min_Sweep != 0.0) {
csound->Warning(csound,
Str("squinewave iminsweep range 4 to sr/100. "
"Set to default %d"), minsweep_default);
}
p->Min_Sweep = minsweep_default;
}
p->Maxphase_By_sr = 2.0 / sr;
p->Max_Warp_Freq = sr / (2.0 * p->Min_Sweep);
p->sync_sig = IS_ASIG_ARG(p->async_in) ? p->async_in : 0;
return OK;
}
/* ================================================================== */
int32_t squinewave_gen(CSOUND* csound, SQUINEWAVE *p)
{
IGN(csound);
const uint32_t nsmps = CS_KSMPS;
uint32_t n;
// Clear parts of output outside event
const uint32_t ksmps_offset = p->h.insdshead->ksmps_offset;
const uint32_t ksmps_end = nsmps - p->h.insdshead->ksmps_no_end;
if (UNLIKELY(ksmps_offset)) memset(p->aout, 0, ksmps_offset * sizeof(MYFLT));
if (UNLIKELY(ksmps_end < nsmps)) {
memset(&p->aout[ksmps_end], 0, p->h.insdshead->ksmps_no_end * sizeof(MYFLT));
}
const double Maxphase_By_sr = p->Maxphase_By_sr;
const double Max_Warp_Freq = p->Max_Warp_Freq;
const double Max_Warp = 1.0 / p->Min_Sweep;
const double Min_Sweep = p->Min_Sweep;
MYFLT *aout = &p->aout[0];
const MYFLT * const freq_sig = p->acps;
const MYFLT * const clip_sig = p->aclip;
const MYFLT * const skew_sig = p->askew;
double phase = p->phase;
double warped_phase = p->warped_phase;
double hardsync_phase = p->hardsync_phase;
double hardsync_inc = p->hardsync_inc;
int32_t sync = find_sync(p->sync_sig, ksmps_offset, ksmps_end);
// Set main phase so it matches warp
if (p->init_phase) {
const double freq = fmax(freq_sig[0], 0.0);
const double phase_inc = Maxphase_By_sr * freq;
const double min_sweep = phase_inc * Min_Sweep;
const double skew = 1.0 - Clamp(skew_sig[0], -1.0, 1.0);
const double clip = 1.0 - Clamp(clip_sig[0], 0.0, 1.0);
const double midpoint = Clamp(skew, min_sweep, 2.0 - min_sweep);
// Init phase range 0-2, has 4 segment parts (sweep down,
// flat -1, sweep up, flat +1)
warped_phase = *p->iphase;
if (warped_phase < 0.0) {
// "up" 0-crossing
warped_phase = 1.25;
}
if (warped_phase > 2.0)
warped_phase = fmod(warped_phase, 2.0);
// Select segment and scale within
if (warped_phase < 1.0) {
const double sweep_length = fmax(clip * midpoint, min_sweep);
if (warped_phase < 0.5) {
phase = sweep_length * (warped_phase * 2.0);
warped_phase *= 2.0;
}
else {
const double flat_length = midpoint - sweep_length;
phase = sweep_length + flat_length * ((warped_phase - 0.5) * 2.0);
warped_phase = 1.0;
}
}
else {
const double sweep_length = fmax(clip * (2.0 - midpoint), min_sweep);
if (warped_phase < 1.5) {
phase = midpoint + sweep_length * ((warped_phase - 1.0) * 2.0);
warped_phase = 1.0 + (warped_phase - 1.0) * 2.0;
}
else {
const double flat_length = 2.0 - (midpoint + sweep_length);
phase = midpoint + sweep_length +
flat_length * ((warped_phase - 1.5) * 2.0);
warped_phase = 2.0;
}
}
p->init_phase = 0;
}
if (p->async_out)
memset(p->async_out, 0, nsmps * sizeof(MYFLT));
for (n = ksmps_offset; n < ksmps_end; ++n)
{
double freq = fmax(freq_sig[n], 0.0);
if (sync == (int32_t)n) {
p->phase = phase;
p->hardsync_phase = hardsync_phase;
p->hardsync_inc = hardsync_inc;
hardsync_init(p, freq, warped_phase);
phase = p->phase;
hardsync_phase = p->hardsync_phase;
hardsync_inc = p->hardsync_inc;
}
if (hardsync_phase) {
const double syncsweep = 0.5 * (1.0 - cos(hardsync_phase));
freq += syncsweep * ((2.0 * Max_Warp_Freq) - freq);
hardsync_phase += hardsync_inc;
if (hardsync_phase > PI) {
hardsync_phase = PI;
hardsync_inc = 0.0;
}
}
const double phase_inc = Maxphase_By_sr * freq;
// Pure sine if freq > sr/(2*Min_Sweep)
if (freq >= Max_Warp_Freq)
{
// Continue from warped
*aout++ = cos(PI * warped_phase);
phase = warped_phase;
warped_phase += phase_inc;
}
else
{
const double min_sweep = phase_inc * Min_Sweep;
const double skew = 1.0 - Clamp(skew_sig[n], -1.0, 1.0);
const double clip = 1.0 - Clamp(clip_sig[n], 0.0, 1.0);
const double midpoint = Clamp(skew, min_sweep, 2.0 - min_sweep);
// 1st half: Sweep down to cos(warped_phase <= Pi) then
// flat -1 until phase >= midpoint
if (warped_phase < 1.0 || (warped_phase == 1.0 && phase < midpoint))
{
if (warped_phase < 1.0) {
const double sweep_length = fmax(clip * midpoint, min_sweep);
*aout++ = cos(PI * warped_phase);
warped_phase += fmin(phase_inc / sweep_length, Max_Warp);
// Handle fractional warped_phase overshoot after sweep ends
if (warped_phase > 1.0) {
/* Tricky here: phase and warped may disagree where
* we are in waveform (due to FM + skew/clip
* changes). Warped dominates to keep waveform
* stable, waveform (flat part) decides where we
* are.
*/
const double flat_length = midpoint - sweep_length;
// warp overshoot scaled to main phase rate
const double phase_overshoot =
(warped_phase - 1.0) * sweep_length;
// phase matches shape
phase = midpoint - flat_length + phase_overshoot - phase_inc;
// Flat if next samp still not at midpoint
if (flat_length >= phase_overshoot) {
warped_phase = 1.0;
// phase may be > midpoint here (which means
// actually no flat part), if so it will be
// corrected in 2nd half (since warped == 1.0)
}
else {
const double next_sweep_length =
fmax(clip * (2.0 - midpoint), min_sweep);
warped_phase =
1.0 + (phase_overshoot - flat_length) / next_sweep_length;
}
}
}
else {
// flat up to midpoint
*aout++ = -1.0;
warped_phase = 1.0;
}
}
// 2nd half: Sweep up to cos(warped_phase <= 2.Pi) then
// flat +1 until phase >= 2
else {
if (warped_phase < 2.0) {
const double sweep_length =
fmax(clip * (2.0 - midpoint), min_sweep);
if (warped_phase == 1.0) {
// warped_phase overshoot after flat part
warped_phase = 1.0 + fmin( fmin(phase - midpoint, phase_inc) /
sweep_length, Max_Warp);
}
*aout++ = cos(PI * warped_phase);
warped_phase += fmin(phase_inc / sweep_length, Max_Warp);
if (warped_phase > 2.0) {
const double flat_length = 2.0 - (midpoint + sweep_length);
const double phase_overshoot =
(warped_phase - 2.0) * sweep_length;
phase = 2.0 - flat_length + phase_overshoot - phase_inc;
if (flat_length >= phase_overshoot) {
warped_phase = 2.0;
}
else {
const double next_sweep_length =
fmax(clip * midpoint, min_sweep);
warped_phase =
2.0 + (phase_overshoot - flat_length) / next_sweep_length;
}
}
}
else {
*aout++ = 1.0;
warped_phase = 2.0;
}
}
}
phase += phase_inc;
if (warped_phase >= 2.0 && phase >= 2.0)
{
if (hardsync_phase) {
warped_phase = phase = 0.0;
hardsync_phase = hardsync_inc = 0.0;
sync = find_sync(p->sync_sig, n + 1, ksmps_end);
}
else {
phase -= 2.0;
if (phase > phase_inc) {
// wild aliasing freq - just reset
phase = phase_inc * 0.5;
}
if (freq < Max_Warp_Freq) {
const double min_sweep = phase_inc * Min_Sweep;
const double skew = 1.0 - Clamp(skew_sig[n], -1.0, 1.0);
const double clip = 1.0 - Clamp(clip_sig[n], 0.0, 1.0);
const double midpoint = Clamp(skew, min_sweep, 2.0 - min_sweep);
const double next_sweep_length = fmax(clip * midpoint, min_sweep);
warped_phase = fmin(phase / next_sweep_length, Max_Warp);
}
else
warped_phase = phase;
}
if (p->async_out)
p->async_out[n] = 1.0;
}
}
p->phase = phase;
p->warped_phase = warped_phase;
p->hardsync_phase = hardsync_phase;
p->hardsync_inc = hardsync_inc;
return OK;
}
/* ================================================================== */
/* ar[, aSyncOut] squinewave aFreq, aClip, aSkew [, aSyncIn, aMinSweep, iphase] */
static OENTRY squinewave_localops[] =
{
{ "squinewave", sizeof(SQUINEWAVE), 0, 3, "am", "aaaaoj",
(SUBR)squinewave_init, (SUBR)squinewave_gen },
{ "squinewave", sizeof(SQUINEWAVE), 0, 3, "am", "aaaOoj",
(SUBR)squinewave_init, (SUBR)squinewave_gen },
};
LINKAGE_BUILTIN(squinewave_localops)
|