1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
|
/*
ugens9.c:
Copyright (C) 1996 Greg Sullivan, 2004 ma++ ingalls
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
#include "stdopcod.h" /* UGENS9.C */
#include <math.h>
#include "convolve.h"
#include "ugens9.h"
#include "soundio.h"
#include <inttypes.h>
static int32_t cvset_(CSOUND *csound, CONVOLVE *p, int32_t stringname)
{
char cvfilnam[MAXNAME];
MEMFIL *mfp;
MYFLT *fltp;
CVSTRUCT *cvh;
int32_t siz;
int32 Hlenpadded = 1, obufsiz, Hlen;
uint32_t nchanls;
uint32_t nsmps = CS_KSMPS;
if (UNLIKELY(csound->oparms->odebug))
csound->Message(csound, CONVOLVE_VERSION_STRING);
if (stringname==0){
if (csound->ISSTRCOD(*p->ifilno))
strNcpy(cvfilnam,get_arg_string(csound, *p->ifilno), MAXNAME-1);
else csound->strarg2name(csound, cvfilnam,p->ifilno, "convolve.",0);
}
else strNcpy(cvfilnam, ((STRINGDAT *)p->ifilno)->data, MAXNAME-1);
if ((mfp = p->mfp) == NULL || strcmp(mfp->filename, cvfilnam) != 0) {
/* if file not already readin */
if (UNLIKELY((mfp = csound->ldmemfile2withCB(csound, cvfilnam,
CSFTYPE_CVANAL,NULL))
== NULL)) {
return csound->InitError(csound,
Str("CONVOLVE cannot load %s"), cvfilnam);
}
}
cvh = (CVSTRUCT *)mfp->beginp;
if (UNLIKELY(cvh->magic != CVMAGIC)) {
return csound->InitError(csound,
Str("%s not a CONVOLVE file (magic %"PRIi32")"),
cvfilnam, cvh->magic);
}
nchanls = (cvh->channel == ALLCHNLS ? cvh->src_chnls : 1);
if (*p->channel == FL(0.0)) {
if (LIKELY(p->OUTOCOUNT == nchanls))
p->nchanls = nchanls;
else {
return csound->InitError(csound,
Str("CONVOLVE: output channels not equal "
"to number of channels in source"));
}
}
else {
if (*p->channel <= nchanls) {
if (UNLIKELY(p->OUTOCOUNT != 1)) {
return csound->InitError(csound,
Str("CONVOLVE: output channels not equal "
"to number of channels in source"));
}
else
p->nchanls = 1;
}
else {
return csound->InitError(csound,
Str("CONVOLVE: channel number greater than "
"number of channels in source"));
}
}
Hlen = p->Hlen = cvh->Hlen;
while (Hlenpadded < 2*Hlen-1)
Hlenpadded <<= 1;
p->Hlenpadded = Hlenpadded;
p->H = (MYFLT *) ((char *)cvh+cvh->headBsize);
if ((p->nchanls == 1) && (*p->channel > 0))
p->H += (Hlenpadded + 2) * (int32_t)(*p->channel - 1);
if (UNLIKELY(cvh->samplingRate != CS_ESR)) {
/* & chk the data */
csound->Warning(csound, Str("%s's srate = %8.0f, orch's srate = %8.0f"),
cvfilnam, cvh->samplingRate, CS_ESR);
}
if (UNLIKELY(cvh->dataFormat != CVMYFLT)) {
return csound->InitError(csound,
Str("unsupported CONVOLVE data "
"format %"PRIi32" in %s"),
cvh->dataFormat, cvfilnam);
}
/* Determine size of circular output buffer */
if (Hlen >= (int32)nsmps)
obufsiz = (int32) CEIL((MYFLT) Hlen / nsmps) * nsmps;
else
obufsiz = (int32) CEIL(CS_KSMPS / (MYFLT) Hlen) * Hlen;
siz = ((Hlenpadded + 2) + p->nchanls * ((Hlen - 1) + obufsiz)
+ (p->nchanls > 1 ? (Hlenpadded + 2) : 0));
if (p->auxch.auxp == NULL || p->auxch.size < siz*sizeof(MYFLT)) {
/* if no buffers yet, alloc now */
csound->AuxAlloc(csound, (size_t) siz*sizeof(MYFLT), &p->auxch);
fltp = (MYFLT *) p->auxch.auxp;
p->fftbuf = fltp; fltp += (Hlenpadded + 2); /* and insert addresses */
p->olap = fltp; fltp += p->nchanls*(Hlen - 1);
p->outbuf = fltp; fltp += p->nchanls*obufsiz;
p->X = fltp;
}
else {
fltp = (MYFLT *) p->auxch.auxp;
memset(fltp, 0, sizeof(MYFLT)*siz);
/* for(i=0; i < siz; i++) fltp[i] = FL(0.0); */
}
p->obufsiz = obufsiz;
p->outcnt = obufsiz;
p->incount = 0;
p->obufend = p->outbuf + obufsiz - 1;
p->outhead = p->outail = p->outbuf;
p->fwdsetup = csound->RealFFT2Setup(csound, Hlenpadded, FFT_FWD);
p->invsetup = csound->RealFFT2Setup(csound, Hlenpadded, FFT_INV);
return OK;
}
static int32_t cvset(CSOUND *csound, CONVOLVE *p){
return cvset_(csound,p,0);
}
static int32_t cvset_S(CSOUND *csound, CONVOLVE *p){
return cvset_(csound,p,1);
}
/* Write from a circular buffer into a linear output buffer without
clearing data
UPDATES SOURCE & DESTINATION POINTERS TO REFLECT NEW POSITIONS */
static void writeFromCircBuf(
MYFLT **sce,
MYFLT **dst, /* Circular source and linear destination */
MYFLT *sceStart,
MYFLT *sceEnd, /* Address of start & end of source buffer */
int32 numToDo) /* How many points to write (<= circBufSize) */
{
MYFLT *srcindex = *sce;
MYFLT *dstindex = *dst;
int32 breakPoint; /* how many points to add before having to wrap */
breakPoint = sceEnd - srcindex + 1;
if (numToDo >= breakPoint) { /* we will do 2 in 1st loop, rest in 2nd. */
numToDo -= breakPoint;
for (; breakPoint > 0; --breakPoint) {
*dstindex++ = *srcindex++;
}
srcindex = sceStart;
}
for (; numToDo > 0; --numToDo) {
*dstindex++ = *srcindex++;
}
*sce = srcindex;
*dst = dstindex;
return;
}
static int32_t convolve(CSOUND *csound, CONVOLVE *p)
{
int32_t nsmpso=CS_KSMPS,nsmpsi=CS_KSMPS,outcnt_sav;
int32_t nchm1 = p->nchanls - 1,chn;
int32 i,j;
MYFLT *ar[4];
MYFLT *ai = p->ain;
MYFLT *fftbufind;
int32 outcnt = p->outcnt;
int32 incount=p->incount;
int32 Hlen = p->Hlen;
int32 Hlenm1 = Hlen - 1;
int32 obufsiz = p->obufsiz;
MYFLT *outhead = NULL;
MYFLT *outail = p->outail;
MYFLT *olap;
MYFLT *X;
int32 Hlenpadded = p->Hlenpadded;
MYFLT scaleFac;
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = p->h.insdshead->ksmps_no_end;
uint32_t nn,nsmpso_sav;
scaleFac = csound->GetInverseRealFFTScale(csound, (int32_t) Hlenpadded);
ar[0] = p->ar1;
ar[1] = p->ar2;
ar[2] = p->ar3;
ar[3] = p->ar4;
if (UNLIKELY(p->auxch.auxp==NULL)) goto err1;
/* First dump as much pre-existing audio in output buffer as possible */
if (outcnt > 0) {
if (outcnt <= (int32_t)CS_KSMPS)
i = outcnt;
else
i = CS_KSMPS;
nsmpso -= i; outcnt -= i;
for (chn = nchm1;chn >= 0;chn--) {
outhead = p->outhead + chn*obufsiz;
writeFromCircBuf(&outhead,&ar[chn],p->outbuf+chn*obufsiz,
p->obufend+chn*obufsiz,i);
}
p->outhead = outhead;
}
while (nsmpsi > 0) {
/* Read input audio and place into work buffer. */
fftbufind = p->fftbuf + incount;
if ((incount + nsmpsi) <= Hlen)
i = nsmpsi;
else
i = Hlen - incount;
nsmpsi -= i;
incount += i;
nsmpso_sav = CS_KSMPS-early;
for (nn=0; i>0; nn++, i--) {
if (nn<offset|| nn>(uint32_t)nsmpso_sav)
*fftbufind++ = FL(0.0);
else
*fftbufind++ = scaleFac * ai[nn];
}
if (incount == Hlen) {
/* We have enough audio for a convolution. */
incount = 0;
/* FFT the input (to create X) */
/*csound->Message(csound, "CONVOLVE: ABOUT TO FFT\n"); */
csound->RealFFT2(csound, p->fwdsetup, p->fftbuf);
p->fftbuf[Hlenpadded] = p->fftbuf[1];
p->fftbuf[1] = p->fftbuf[Hlenpadded + 1L] = FL(0.0);
/* save the result if multi-channel */
if (nchm1) {
fftbufind = p->fftbuf;
X = p->X;
for (i = Hlenpadded + 2;i > 0;i--)
*X++ = *fftbufind++;
}
nsmpso_sav = nsmpso;
outcnt_sav = outcnt;
for (chn = nchm1;chn >= 0;chn--) {
outhead = p->outhead + chn*obufsiz;
outail = p->outail + chn*obufsiz;
olap = p->olap + chn*Hlenm1;
if (chn < nchm1) {
fftbufind = p->fftbuf;
X = p->X;
for (i = Hlenpadded + 2;i> 0;i--)
*fftbufind++ = *X++;
}
/*csound->Message(csound, "CONVOLVE: ABOUT TO MULTIPLY\n"); */
/* Multiply H * X, point for point */
{
MYFLT *a, *b, re, im;
int32_t i;
a = (MYFLT*) p->H + (int32_t) (chn * (Hlenpadded + 2));
b = (MYFLT*) p->fftbuf;
for (i = 0; i <= (int32_t) Hlenpadded; i += 2) {
re = a[i + 0] * b[i + 0] - a[i + 1] * b[i + 1];
im = a[i + 0] * b[i + 1] + a[i + 1] * b[i + 0];
b[i + 0] = re;
b[i + 1] = im;
}
}
/*csound->Message(csound, "CONVOLVE: ABOUT TO IFFT\n"); */
/* Perform inverse FFT on X */
p->fftbuf[1] = p->fftbuf[Hlenpadded];
p->fftbuf[Hlenpadded] = p->fftbuf[Hlenpadded + 1L] = FL(0.0);
csound->RealFFT2(csound, p->invsetup, p->fftbuf);
/* Take the first Hlen output samples and output them to
either the real audio output buffer or the local circular
buffer */
nsmpso = nsmpso_sav;
outcnt = outcnt_sav;
fftbufind = p->fftbuf;
if ( (nsmpso > 0)&&(outcnt == 0) ) {
/* csound->Message(csound, "Outputting to audio buffer proper\n");*/
/* space left in output buffer, and nothing currently in circular
buffer, so write as much as possible to output buffer first */
if (nsmpso >= Hlenm1) {
nsmpso -= Hlenm1;
for (i=Hlenm1;i > 0;--i)
*ar[chn]++ = *fftbufind++ + *olap++;
if (nsmpso > 0) {
*ar[chn]++ = *fftbufind++;
--nsmpso;
}
}
else {
for (;nsmpso > 0;--nsmpso)
*ar[chn]++ = *fftbufind++ + *olap++;
}
}
/* Any remaining output must go into circular buffer */
/*csound->Message(csound, "Outputting to circ. buffer\n");*/
i = Hlen - (fftbufind - p->fftbuf);
outcnt += i;
i--; /* do first Hlen -1 samples with overlap */
j = p->obufend+chn*obufsiz - outail + 1;
if (i >= j) {
i -= j;
for (;j > 0;--j)
*outail++ = *fftbufind++ + *olap++;
outail = p->outbuf+chn*obufsiz;
}
for (;i > 0;--i)
*outail++ = *fftbufind++ + *olap++;
/* just need to do sample at Hlen now */
*outail++ = *fftbufind++;
if (outail > p->obufend+chn*obufsiz)
outail = p->outbuf+chn*obufsiz;
/* Pad the rest to zero, and save first remaining (Hlen - 1) to overlap
buffer */
olap = p->olap+chn*Hlenm1;
for (i = Hlenm1;i > 0;--i) {
*olap++ = *fftbufind;
*fftbufind++ = FL(0.0);
}
//olap = p->olap+chn*Hlenm1;
/* Now pad the rest to zero as well. In theory, this shouldn't be
necessary, however it's conceivable that rounding errors may
creep in, and these cells won't be exactly zero. So, let's
make absolutely sure */
for (i = Hlenpadded - (Hlen+Hlenm1);i > 0;--i)
*fftbufind++ = FL(0.0);
} /* end main for loop */
p->outhead = outhead;
p->outail = outail;
}
} /* end while */
/* update state in p */
p->incount = incount;
p->outcnt = outcnt;
p->outhead = outhead;
p->outail = outail;
return OK;
err1:
return csound->PerfError(csound, &(p->h),
Str("convolve: not initialised"));
}
/* partitioned (low latency) overlap-save convolution.
we break up the IR into separate blocks, then perform
an FFT on each partition. For this reason we ONLY accept
soundfiles as input, and do all of the traditional 'cvanal'
processing at i-time. it would be nice to eventually
have cvanal create a partitioned format, which in turn would
allow this opcode to accept .con files.
-ma++ april 2004 */
static int32_t pconvset_(CSOUND *csound, PCONVOLVE *p, int32_t stringname)
{
int32_t channel = (*(p->channel) <= 0 ? ALLCHNLS : (int32_t) *(p->channel));
SNDFILE *infd;
SOUNDIN IRfile;
MYFLT *inbuf, *fp1,*fp2;
int32 i, j, read_in, part;
MYFLT *IRblock;
MYFLT ainput_dur, scaleFac;
MYFLT partitionSize;
/* IV - 2005-04-06: fixed bug: was uninitialised */
memset(&IRfile, 0, sizeof(SOUNDIN));
/* open impulse response soundfile [code derived from SAsndgetset()] */
IRfile.skiptime = FL(0.0);
if (stringname==0){
if (csound->ISSTRCOD(*p->ifilno))
strNcpy(IRfile.sfname,get_arg_string(csound, *p->ifilno), 511);
else csound->strarg2name(csound, IRfile.sfname, p->ifilno, "soundin.",0);
}
else strNcpy(IRfile.sfname, ((STRINGDAT *)p->ifilno)->data, 511);
IRfile.sr = 0;
if (UNLIKELY(channel < 1 || ((channel > 4) && (channel != ALLCHNLS)))) {
return csound->InitError(csound, Str("channel request %d illegal"), channel);
}
IRfile.channel = channel;
IRfile.analonly = 1;
if (UNLIKELY((infd = csound->sndgetset(csound, &IRfile)) == NULL)) {
return csound->InitError(csound, Str("pconvolve: error while impulse file"));
}
if (UNLIKELY(IRfile.framesrem < 0)) {
csound->Warning(csound, Str("undetermined file length, "
"will attempt requested duration"));
ainput_dur = FL(0.0); /* This is probably wrong -- JPff */
}
else {
IRfile.getframes = IRfile.framesrem;
if (UNLIKELY(IRfile.sr==0)) return csound->InitError(csound, Str("SR zero"));
ainput_dur = (MYFLT) IRfile.getframes / IRfile.sr;
}
csound->Warning(csound, Str("analyzing %ld sample frames (%3.1f secs)\n"),
(long) IRfile.getframes, ainput_dur);
p->nchanls = (channel != ALLCHNLS ? 1 : IRfile.nchanls);
if (UNLIKELY(p->nchanls != (int32_t)p->OUTOCOUNT)) {
return csound->InitError(csound, Str("PCONVOLVE: number of output channels "
"not equal to input channels"));
}
if (UNLIKELY(IRfile.sr != CS_ESR)) {
/* ## RWD suggests performing sr conversion here! */
csound->Warning(csound, Str("IR srate != orch's srate"));
}
/* make sure the partition size is nonzero and a power of 2 */
if (*p->partitionSize <= 0)
partitionSize = csound->oparms->outbufsamps / csound->GetNchnls(csound);
else
partitionSize = *p->partitionSize;
p->Hlen = 1;
while (p->Hlen < partitionSize)
p->Hlen <<= 1;
p->Hlenpadded = 2*p->Hlen;
/* determine the number of partitions */
p->numPartitions = CEIL((MYFLT)(IRfile.getframes) / (MYFLT)p->Hlen);
/* set up FFT tables */
inbuf = (MYFLT *) csound->Malloc(csound,
p->Hlen * p->nchanls * sizeof(MYFLT));
csound->AuxAlloc(csound, p->numPartitions * (p->Hlenpadded + 2) *
sizeof(MYFLT) * p->nchanls, &p->H);
IRblock = (MYFLT *)p->H.auxp;
p->fwdsetup = csound->RealFFT2Setup(csound,p->Hlenpadded, FFT_FWD);
p->invsetup = csound->RealFFT2Setup(csound,p->Hlenpadded, FFT_INV);
/* form each partition and take its FFT */
for (part = 0; part < p->numPartitions; part++) {
/* get the block of input samples and normalize -- soundin code
handles finding the right channel */
if (UNLIKELY((read_in = csound->getsndin(csound, infd, inbuf,
p->Hlen*p->nchanls, &IRfile)) <= 0))
return csound->InitError(csound,
Str("PCONVOLVE: less sound than expected!"));
/* take FFT of each channel */
scaleFac = csound->dbfs_to_float
* csound->GetInverseRealFFTScale(csound, (int32_t) p->Hlenpadded);
for (i = 0; i < p->nchanls; i++) {
fp1 = inbuf + i;
fp2 = IRblock;
for (j = 0; j < read_in/p->nchanls; j++) {
*fp2++ = *fp1 * scaleFac;
fp1 += p->nchanls;
}
csound->RealFFT2(csound, p->fwdsetup, IRblock);
IRblock[p->Hlenpadded] = IRblock[1];
IRblock[1] = IRblock[p->Hlenpadded + 1L] = FL(0.0);
IRblock += (p->Hlenpadded + 2);
}
}
csound->Free(csound, inbuf);
csound->FileClose(csound, IRfile.fd);
/* allocate the buffer saving recent input samples */
csound->AuxAlloc(csound, p->Hlen * sizeof(MYFLT), &p->savedInput);
p->inCount = 0;
/* allocate the convolution work buffer */
csound->AuxAlloc(csound, (p->Hlenpadded+2) * sizeof(MYFLT), &p->workBuf);
p->workWrite = (MYFLT *)p->workBuf.auxp + p->Hlen;
/* allocate the buffer holding recent past convolutions */
csound->AuxAlloc(csound, (p->Hlenpadded+2) * p->numPartitions
* p->nchanls * sizeof(MYFLT), &p->convBuf);
p->curPart = 0;
/* allocate circular output sample buffer */
p->outBufSiz = sizeof(MYFLT) * p->nchanls *
(p->Hlen >= (int32_t)CS_KSMPS ? p->Hlenpadded : 2*(int32_t)CS_KSMPS);
csound->AuxAlloc(csound, p->outBufSiz, &p->output);
p->outRead = (MYFLT *)p->output.auxp;
/* if ksmps < hlen, we have to pad initial output to prevent a possible
empty ksmps pass after a few initial generated buffers. There is
probably an equation to figure this out to reduce the delay, but
I can't seem to figure it out */
if (p->Hlen > (int32_t)CS_KSMPS) {
p->outCount = p->Hlen + CS_KSMPS;
p->outWrite = p->outRead + (p->nchanls * p->outCount);
}
else {
p->outCount = 0;
p->outWrite = p->outRead;
}
return OK;
}
static int32_t pconvset(CSOUND *csound, PCONVOLVE *p){
return pconvset_(csound,p,0);
}
static int32_t pconvset_S(CSOUND *csound, PCONVOLVE *p){
return pconvset_(csound,p,1);
}
static int32_t pconvolve(CSOUND *csound, PCONVOLVE *p)
{
uint32_t nn, nsmps = CS_KSMPS;
uint32_t offset = p->h.insdshead->ksmps_offset;
uint32_t early = nsmps - p->h.insdshead->ksmps_no_end;
MYFLT *ai = p->ain;
MYFLT *buf;
MYFLT *input = (MYFLT*) p->savedInput.auxp, *workWrite = p->workWrite;
MYFLT *a1 = p->ar1, *a2 = p->ar2, *a3 = p->ar3, *a4 = p->ar4;
int32 i, j, count = p->inCount;
int32 hlenpaddedplus2 = p->Hlenpadded+2;
for (nn=0; nn<nsmps; nn++) {
/* Read input audio and place into buffer. */
input[count++] = *workWrite++ = (nn<offset||nn>early? FL(0.0) : ai[nn]);
/* We have enough audio for a convolution. */
if (count == p->Hlen) {
MYFLT *dest = (MYFLT*) p->convBuf.auxp
+ p->curPart * (p->Hlenpadded + 2) * p->nchanls;
MYFLT *h = (MYFLT*) p->H.auxp;
MYFLT *workBuf = (MYFLT*) p->workBuf.auxp;
/* FFT the input (to create X) */
*workWrite = FL(0.0); /* zero out nyquist bin from last fft result
- maybe is ignored for input(?) but just in case.. */
csound->RealFFT2(csound, p->fwdsetup, workBuf);
workBuf[p->Hlenpadded] = workBuf[1];
workBuf[1] = workBuf[p->Hlenpadded + 1L] = FL(0.0);
/* for every IR partition convolve and add to previous convolves */
for (i = 0; i < p->numPartitions*p->nchanls; i++) {
MYFLT *src = workBuf;
int32_t n;
for (n = 0; n <= (int32_t) p->Hlenpadded; n += 2) {
dest[n + 0] += (h[n + 0] * src[n + 0]) - (h[n + 1] * src[n + 1]);
dest[n + 1] += (h[n + 1] * src[n + 0]) + (h[n + 0] * src[n + 1]);
}
h += n; dest += n;
if (UNLIKELY(dest == (MYFLT*)p->convBuf.endp))
dest = (MYFLT*)p->convBuf.auxp;
}
/* Perform inverse FFT of the ondeck partion block */
buf = (MYFLT*) p->convBuf.auxp
+ p->curPart * p->nchanls * hlenpaddedplus2;
for (i = 0; i < p->nchanls; i++) {
MYFLT *bufp;
bufp = buf + i * hlenpaddedplus2;
bufp[1] = bufp[p->Hlenpadded];
bufp[p->Hlenpadded] = bufp[p->Hlenpadded + 1L] = FL(0.0);
csound->RealFFT2(csound, p->invsetup, bufp);
}
/* We only take only the last Hlen output samples so we first zero out
the first half for next time, then we copy the rest to output buffer
*/
for (j = 0; j < p->nchanls; j++) {
MYFLT *outp = p->outWrite + j;
for (i = 0; i < p->Hlen; i++)
*buf++ = FL(0.0);
for (i = 0; i < p->Hlen; i++) {
*outp = *buf;
*buf++ = FL(0.0);
outp += p->nchanls;
if (outp >= (MYFLT *)p->output.endp)
outp = (MYFLT *)p->output.auxp + j;
}
buf += 2;
}
p->outWrite += p->Hlen*p->nchanls;
if (p->outWrite >= (MYFLT *)p->output.endp)
p->outWrite -= p->outBufSiz/sizeof(MYFLT);
p->outCount += p->Hlen;
if (++p->curPart == p->numPartitions)
/* advance to the next partition */
p->curPart = 0;
/* copy the saved input into the work buffer for next time around */
memcpy(p->workBuf.auxp, input, p->Hlen * sizeof(MYFLT));
count = 0;
workWrite = (MYFLT *)p->workBuf.auxp + p->Hlen;
}
} /* end while */
/* copy to output if we have enough samples [we always should
except the first Hlen samples] */
if (p->outCount >= (int32_t)CS_KSMPS) {
uint32_t n;
p->outCount -= CS_KSMPS;
for (n=0; n < CS_KSMPS; n++) {
switch (p->nchanls) {
case 1:
*a1++ = *p->outRead++;
break;
case 2:
*a1++ = *p->outRead++;
*a2++ = *p->outRead++;
break;
case 3:
*a1++ = *p->outRead++;
*a2++ = *p->outRead++;
*a3++ = *p->outRead++;
break;
case 4:
*a1++ = *p->outRead++;
*a2++ = *p->outRead++;
*a3++ = *p->outRead++;
*a4++ = *p->outRead++;
break;
}
if (p->outRead == p->output.endp)
p->outRead = p->output.auxp;
}
}
/* update struct */
p->inCount = count;
p->workWrite = workWrite;
return OK;
}
static OENTRY localops[] =
{
{ "convolve", sizeof(CONVOLVE), 0, 3, "mmmm", "aSo",
(SUBR) cvset_S, (SUBR) convolve },
{ "convle", sizeof(CONVOLVE), 0, 3, "mmmm", "aSo",
(SUBR) cvset_S, (SUBR) convolve },
{ "pconvolve",sizeof(PCONVOLVE), 0, 3, "mmmm", "aSoo",
(SUBR) pconvset_S, (SUBR) pconvolve },
{ "convolve.i", sizeof(CONVOLVE), 0, 3, "mmmm", "aio",
(SUBR) cvset, (SUBR) convolve },
{ "convle.i", sizeof(CONVOLVE), 0, 3, "mmmm", "aio",
(SUBR) cvset, (SUBR) convolve },
{ "pconvolve.i",sizeof(PCONVOLVE), 0, 3, "mmmm", "aioo",
(SUBR) pconvset, (SUBR) pconvolve }
};
int32_t ugens9_init_(CSOUND *csound)
{
return csound->AppendOpcodes(csound, &(localops[0]),
(int32_t) (sizeof(localops) / sizeof(OENTRY)));
}
|