File: ugens9.c

package info (click to toggle)
csound 1%3A6.18.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 63,220 kB
  • sloc: ansic: 192,643; cpp: 14,149; javascript: 9,654; objc: 9,181; python: 3,376; java: 3,337; sh: 1,840; yacc: 1,255; xml: 985; perl: 635; lisp: 411; tcl: 341; lex: 217; makefile: 128
file content (673 lines) | stat: -rw-r--r-- 24,432 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
/*
    ugens9.c:

    Copyright (C) 1996 Greg Sullivan, 2004 ma++ ingalls

    This file is part of Csound.

    The Csound Library is free software; you can redistribute it
    and/or modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    Csound is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with Csound; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
    02110-1301 USA
*/

#include "stdopcod.h"   /*                                      UGENS9.C        */
#include <math.h>
#include "convolve.h"
#include "ugens9.h"
#include "soundio.h"
#include <inttypes.h>

static int32_t cvset_(CSOUND *csound, CONVOLVE *p, int32_t stringname)
{
    char     cvfilnam[MAXNAME];
    MEMFIL   *mfp;
    MYFLT    *fltp;
    CVSTRUCT *cvh;
    int32_t       siz;
    int32     Hlenpadded = 1, obufsiz, Hlen;
    uint32_t  nchanls;
    uint32_t  nsmps = CS_KSMPS;

    if (UNLIKELY(csound->oparms->odebug))
      csound->Message(csound, CONVOLVE_VERSION_STRING);

    if (stringname==0){
      if (csound->ISSTRCOD(*p->ifilno))
        strNcpy(cvfilnam,get_arg_string(csound, *p->ifilno), MAXNAME-1);
      else csound->strarg2name(csound, cvfilnam,p->ifilno, "convolve.",0);
    }
    else strNcpy(cvfilnam, ((STRINGDAT *)p->ifilno)->data, MAXNAME-1);

    if ((mfp = p->mfp) == NULL || strcmp(mfp->filename, cvfilnam) != 0) {
      /* if file not already readin */
      if (UNLIKELY((mfp = csound->ldmemfile2withCB(csound, cvfilnam,
                                                   CSFTYPE_CVANAL,NULL))
                   == NULL)) {
        return csound->InitError(csound,
                                 Str("CONVOLVE cannot load %s"), cvfilnam);
      }
    }
    cvh = (CVSTRUCT *)mfp->beginp;
    if (UNLIKELY(cvh->magic != CVMAGIC)) {
      return csound->InitError(csound,
                               Str("%s not a CONVOLVE file (magic %"PRIi32")"),
                               cvfilnam, cvh->magic);
    }

    nchanls = (cvh->channel == ALLCHNLS ? cvh->src_chnls : 1);

    if (*p->channel == FL(0.0)) {
      if (LIKELY(p->OUTOCOUNT == nchanls))
        p->nchanls = nchanls;
      else {
        return csound->InitError(csound,
                                 Str("CONVOLVE: output channels not equal "
                                     "to number of channels in source"));
      }
    }
    else {
      if (*p->channel <= nchanls) {
        if (UNLIKELY(p->OUTOCOUNT != 1)) {
          return csound->InitError(csound,
                                   Str("CONVOLVE: output channels not equal "
                                        "to number of channels in source"));
        }
        else
          p->nchanls = 1;
      }
      else {
        return csound->InitError(csound,
                                 Str("CONVOLVE: channel number greater than "
                                     "number of channels in source"));
      }
    }
    Hlen = p->Hlen = cvh->Hlen;
    while (Hlenpadded < 2*Hlen-1)
      Hlenpadded <<= 1;
    p->Hlenpadded = Hlenpadded;
    p->H = (MYFLT *) ((char *)cvh+cvh->headBsize);
    if ((p->nchanls == 1) && (*p->channel > 0))
      p->H += (Hlenpadded + 2) * (int32_t)(*p->channel - 1);

    if (UNLIKELY(cvh->samplingRate != CS_ESR)) {
      /* & chk the data */
      csound->Warning(csound, Str("%s's srate = %8.0f, orch's srate = %8.0f"),
                              cvfilnam, cvh->samplingRate, CS_ESR);
    }
    if (UNLIKELY(cvh->dataFormat != CVMYFLT)) {
      return csound->InitError(csound,
                               Str("unsupported CONVOLVE data "
                                   "format %"PRIi32" in %s"),
                               cvh->dataFormat, cvfilnam);
    }

    /* Determine size of circular output buffer */
    if (Hlen >= (int32)nsmps)
      obufsiz = (int32) CEIL((MYFLT) Hlen / nsmps) * nsmps;
    else
      obufsiz = (int32) CEIL(CS_KSMPS / (MYFLT) Hlen) * Hlen;

    siz = ((Hlenpadded + 2) + p->nchanls * ((Hlen - 1) + obufsiz)
              + (p->nchanls > 1 ? (Hlenpadded + 2) : 0));
    if (p->auxch.auxp == NULL || p->auxch.size < siz*sizeof(MYFLT)) {
      /* if no buffers yet, alloc now */
      csound->AuxAlloc(csound, (size_t) siz*sizeof(MYFLT), &p->auxch);
      fltp = (MYFLT *) p->auxch.auxp;
      p->fftbuf = fltp;   fltp += (Hlenpadded + 2); /* and insert addresses */
      p->olap = fltp;     fltp += p->nchanls*(Hlen - 1);
      p->outbuf = fltp;   fltp += p->nchanls*obufsiz;
      p->X  = fltp;
    }
    else {
      fltp = (MYFLT *) p->auxch.auxp;
      memset(fltp, 0, sizeof(MYFLT)*siz);
    /* for(i=0; i < siz; i++) fltp[i] = FL(0.0); */
    }
    p->obufsiz = obufsiz;
    p->outcnt = obufsiz;
    p->incount = 0;
    p->obufend = p->outbuf + obufsiz - 1;
    p->outhead = p->outail = p->outbuf;
    p->fwdsetup = csound->RealFFT2Setup(csound, Hlenpadded, FFT_FWD);
    p->invsetup = csound->RealFFT2Setup(csound, Hlenpadded, FFT_INV);
    return OK;
}

static int32_t cvset(CSOUND *csound, CONVOLVE *p){
  return cvset_(csound,p,0);

}

static int32_t cvset_S(CSOUND *csound, CONVOLVE *p){
  return cvset_(csound,p,1);

}
/* Write from a circular buffer into a linear output buffer without
   clearing data
   UPDATES SOURCE & DESTINATION POINTERS TO REFLECT NEW POSITIONS */
static void writeFromCircBuf(
    MYFLT   **sce,
    MYFLT   **dst,              /* Circular source and linear destination */
    MYFLT   *sceStart,
    MYFLT   *sceEnd,            /* Address of start & end of source buffer */
    int32    numToDo)            /* How many points to write (<= circBufSize) */
{
    MYFLT   *srcindex = *sce;
    MYFLT   *dstindex = *dst;
    int32    breakPoint;     /* how many points to add before having to wrap */

    breakPoint = sceEnd - srcindex + 1;
    if (numToDo >= breakPoint) { /*  we will do 2 in 1st loop, rest in 2nd. */
      numToDo -= breakPoint;
      for (; breakPoint > 0; --breakPoint) {
        *dstindex++ = *srcindex++;
      }
      srcindex = sceStart;
    }
    for (; numToDo > 0; --numToDo) {
      *dstindex++ = *srcindex++;
    }
    *sce = srcindex;
    *dst = dstindex;
    return;
}

static int32_t convolve(CSOUND *csound, CONVOLVE *p)
{
    int32_t    nsmpso=CS_KSMPS,nsmpsi=CS_KSMPS,outcnt_sav;
    int32_t    nchm1 = p->nchanls - 1,chn;
    int32  i,j;
    MYFLT  *ar[4];
    MYFLT  *ai = p->ain;
    MYFLT  *fftbufind;
    int32  outcnt = p->outcnt;
    int32  incount=p->incount;
    int32  Hlen = p->Hlen;
    int32  Hlenm1 = Hlen - 1;
    int32  obufsiz = p->obufsiz;
    MYFLT  *outhead = NULL;
    MYFLT  *outail = p->outail;
    MYFLT  *olap;
    MYFLT  *X;
    int32  Hlenpadded = p->Hlenpadded;
    MYFLT  scaleFac;
    uint32_t offset = p->h.insdshead->ksmps_offset;
    uint32_t early  = p->h.insdshead->ksmps_no_end;
    uint32_t nn,nsmpso_sav;

    scaleFac = csound->GetInverseRealFFTScale(csound, (int32_t) Hlenpadded);
    ar[0] = p->ar1;
    ar[1] = p->ar2;
    ar[2] = p->ar3;
    ar[3] = p->ar4;

    if (UNLIKELY(p->auxch.auxp==NULL)) goto err1;
    /* First dump as much pre-existing audio in output buffer as possible */
    if (outcnt > 0) {
      if (outcnt <= (int32_t)CS_KSMPS)
        i = outcnt;
      else
        i = CS_KSMPS;
      nsmpso -= i; outcnt -= i;
      for (chn = nchm1;chn >= 0;chn--) {
        outhead = p->outhead + chn*obufsiz;
        writeFromCircBuf(&outhead,&ar[chn],p->outbuf+chn*obufsiz,
                         p->obufend+chn*obufsiz,i);
      }
      p->outhead = outhead;
    }
    while (nsmpsi > 0) {
      /* Read input audio and place into work buffer. */

      fftbufind = p->fftbuf + incount;
      if ((incount + nsmpsi) <= Hlen)
        i = nsmpsi;
      else
        i = Hlen - incount;
      nsmpsi -= i;
      incount += i;
      nsmpso_sav = CS_KSMPS-early;
      for (nn=0; i>0; nn++, i--) {
        if (nn<offset|| nn>(uint32_t)nsmpso_sav)
          *fftbufind++ = FL(0.0);
        else
          *fftbufind++ = scaleFac * ai[nn];
      }
      if (incount == Hlen) {
        /* We have enough audio for a convolution. */
        incount = 0;
        /* FFT the input (to create X) */
        /*csound->Message(csound, "CONVOLVE: ABOUT TO FFT\n"); */
        csound->RealFFT2(csound, p->fwdsetup, p->fftbuf);
        p->fftbuf[Hlenpadded] = p->fftbuf[1];
        p->fftbuf[1] = p->fftbuf[Hlenpadded + 1L] = FL(0.0);
        /* save the result if multi-channel */
        if (nchm1) {
          fftbufind = p->fftbuf;
          X = p->X;
          for (i = Hlenpadded + 2;i > 0;i--)
            *X++ = *fftbufind++;
        }
        nsmpso_sav = nsmpso;
        outcnt_sav = outcnt;
        for (chn = nchm1;chn >= 0;chn--) {
          outhead = p->outhead + chn*obufsiz;
          outail = p->outail + chn*obufsiz;
          olap = p->olap + chn*Hlenm1;
          if (chn < nchm1) {
            fftbufind = p->fftbuf;
            X = p->X;
            for (i = Hlenpadded + 2;i> 0;i--)
              *fftbufind++ = *X++;
          }
          /*csound->Message(csound, "CONVOLVE: ABOUT TO MULTIPLY\n");  */
          /* Multiply H * X, point for point */

          {
            MYFLT *a, *b, re, im;
            int32_t   i;
            a = (MYFLT*) p->H + (int32_t) (chn * (Hlenpadded + 2));
            b = (MYFLT*) p->fftbuf;
            for (i = 0; i <= (int32_t) Hlenpadded; i += 2) {
              re = a[i + 0] * b[i + 0] - a[i + 1] * b[i + 1];
              im = a[i + 0] * b[i + 1] + a[i + 1] * b[i + 0];
              b[i + 0] = re;
              b[i + 1] = im;
            }
          }

          /*csound->Message(csound, "CONVOLVE: ABOUT TO IFFT\n"); */
          /* Perform inverse FFT on X */

          p->fftbuf[1] = p->fftbuf[Hlenpadded];
          p->fftbuf[Hlenpadded] = p->fftbuf[Hlenpadded + 1L] = FL(0.0);
          csound->RealFFT2(csound, p->invsetup, p->fftbuf);

          /* Take the first Hlen output samples and output them to
             either the real audio output buffer or the local circular
             buffer */
          nsmpso = nsmpso_sav;
          outcnt = outcnt_sav;
          fftbufind = p->fftbuf;
          if ( (nsmpso > 0)&&(outcnt == 0) ) {
      /*    csound->Message(csound, "Outputting to audio buffer proper\n");*/
            /* space left in output buffer, and nothing currently in circular
               buffer, so write as much as possible to output buffer first */
            if (nsmpso >= Hlenm1) {
              nsmpso -= Hlenm1;
              for (i=Hlenm1;i > 0;--i)
                *ar[chn]++ = *fftbufind++ + *olap++;
              if (nsmpso > 0) {
                *ar[chn]++ = *fftbufind++;
                --nsmpso;
              }
            }
            else {
              for (;nsmpso > 0;--nsmpso)
                *ar[chn]++ = *fftbufind++ + *olap++;
            }
          }
/* Any remaining output must go into circular buffer */
/*csound->Message(csound, "Outputting to circ. buffer\n");*/
          i = Hlen - (fftbufind - p->fftbuf);
          outcnt += i;
          i--; /* do first Hlen -1 samples with overlap */
          j = p->obufend+chn*obufsiz - outail + 1;
          if (i >= j) {
            i -= j;
            for (;j > 0;--j)
              *outail++ = *fftbufind++ + *olap++;
            outail = p->outbuf+chn*obufsiz;
          }
          for (;i > 0;--i)
            *outail++ = *fftbufind++ + *olap++;
/*  just need to do sample at Hlen now */
          *outail++ = *fftbufind++;
          if (outail > p->obufend+chn*obufsiz)
            outail = p->outbuf+chn*obufsiz;

/*  Pad the rest to zero, and save first remaining (Hlen - 1) to overlap
    buffer */
          olap = p->olap+chn*Hlenm1;
          for (i = Hlenm1;i > 0;--i) {
            *olap++ = *fftbufind;
            *fftbufind++ = FL(0.0);
          }
          //olap = p->olap+chn*Hlenm1;
    /* Now pad the rest to zero as well. In theory, this shouldn't be
       necessary, however it's conceivable that rounding errors may
       creep in, and these cells won't be exactly zero. So, let's
       make absolutely sure */
          for (i = Hlenpadded - (Hlen+Hlenm1);i > 0;--i)
            *fftbufind++ = FL(0.0);
        } /* end main for loop */
        p->outhead = outhead;
        p->outail = outail;
      }
    } /* end while */

/* update state in p */
    p->incount = incount;
    p->outcnt = outcnt;
    p->outhead = outhead;
    p->outail = outail;
    return OK;
 err1:
    return csound->PerfError(csound, &(p->h),
                             Str("convolve: not initialised"));
}

/* partitioned (low latency) overlap-save convolution.
   we break up the IR into separate blocks, then perform
   an FFT on each partition.  For this reason we ONLY accept
   soundfiles as input, and do all of the traditional 'cvanal'
   processing at i-time.  it would be nice to eventually
   have cvanal create a partitioned format, which in turn would
   allow this opcode to accept .con files.
   -ma++ april 2004 */

static int32_t pconvset_(CSOUND *csound, PCONVOLVE *p, int32_t stringname)
{
    int32_t     channel = (*(p->channel) <= 0 ? ALLCHNLS : (int32_t) *(p->channel));
    SNDFILE *infd;
    SOUNDIN IRfile;
    MYFLT   *inbuf, *fp1,*fp2;
    int32    i, j, read_in, part;
    MYFLT   *IRblock;
    MYFLT   ainput_dur, scaleFac;
    MYFLT   partitionSize;

    /* IV - 2005-04-06: fixed bug: was uninitialised */
    memset(&IRfile, 0, sizeof(SOUNDIN));
    /* open impulse response soundfile [code derived from SAsndgetset()] */
    IRfile.skiptime = FL(0.0);

     if (stringname==0){
      if (csound->ISSTRCOD(*p->ifilno))
        strNcpy(IRfile.sfname,get_arg_string(csound, *p->ifilno), 511);
      else csound->strarg2name(csound, IRfile.sfname, p->ifilno, "soundin.",0);
    }
    else strNcpy(IRfile.sfname, ((STRINGDAT *)p->ifilno)->data, 511);

    IRfile.sr = 0;
    if (UNLIKELY(channel < 1 || ((channel > 4) && (channel != ALLCHNLS)))) {
      return csound->InitError(csound, Str("channel request %d illegal"), channel);
    }
    IRfile.channel = channel;
    IRfile.analonly = 1;
    if (UNLIKELY((infd = csound->sndgetset(csound, &IRfile)) == NULL)) {
      return csound->InitError(csound, Str("pconvolve: error while impulse file"));
    }

    if (UNLIKELY(IRfile.framesrem < 0)) {
      csound->Warning(csound, Str("undetermined file length, "
                                  "will attempt requested duration"));
      ainput_dur = FL(0.0);     /* This is probably wrong -- JPff */
    }
    else {
      IRfile.getframes = IRfile.framesrem;
      if (UNLIKELY(IRfile.sr==0)) return csound->InitError(csound, Str("SR zero"));
      ainput_dur = (MYFLT) IRfile.getframes / IRfile.sr;
      }

    csound->Warning(csound, Str("analyzing %ld sample frames (%3.1f secs)\n"),
                            (long) IRfile.getframes, ainput_dur);

    p->nchanls = (channel != ALLCHNLS ? 1 : IRfile.nchanls);
    if (UNLIKELY(p->nchanls != (int32_t)p->OUTOCOUNT)) {
      return csound->InitError(csound, Str("PCONVOLVE: number of output channels "
                                           "not equal to input channels"));
    }

    if (UNLIKELY(IRfile.sr != CS_ESR)) {
      /* ## RWD suggests performing sr conversion here! */
      csound->Warning(csound, Str("IR srate != orch's srate"));
    }

    /* make sure the partition size is nonzero and a power of 2  */
    if (*p->partitionSize <= 0)
      partitionSize = csound->oparms->outbufsamps / csound->GetNchnls(csound);
    else
      partitionSize = *p->partitionSize;

    p->Hlen = 1;
    while (p->Hlen < partitionSize)
      p->Hlen <<= 1;

    p->Hlenpadded = 2*p->Hlen;

    /* determine the number of partitions */
    p->numPartitions = CEIL((MYFLT)(IRfile.getframes) / (MYFLT)p->Hlen);

    /* set up FFT tables */
    inbuf = (MYFLT *) csound->Malloc(csound,
                                     p->Hlen * p->nchanls * sizeof(MYFLT));
    csound->AuxAlloc(csound, p->numPartitions * (p->Hlenpadded + 2) *
             sizeof(MYFLT) * p->nchanls, &p->H);
    IRblock = (MYFLT *)p->H.auxp;
    p->fwdsetup = csound->RealFFT2Setup(csound,p->Hlenpadded, FFT_FWD);
    p->invsetup = csound->RealFFT2Setup(csound,p->Hlenpadded, FFT_INV);
    /* form each partition and take its FFT */
    for (part = 0; part < p->numPartitions; part++) {
      /* get the block of input samples and normalize -- soundin code
         handles finding the right channel */
      if (UNLIKELY((read_in = csound->getsndin(csound, infd, inbuf,
                                               p->Hlen*p->nchanls, &IRfile)) <= 0))
        return csound->InitError(csound,
                                 Str("PCONVOLVE: less sound than expected!"));

      /* take FFT of each channel */
      scaleFac = csound->dbfs_to_float
                 * csound->GetInverseRealFFTScale(csound, (int32_t) p->Hlenpadded);
      for (i = 0; i < p->nchanls; i++) {
        fp1 = inbuf + i;
        fp2 = IRblock;
        for (j = 0; j < read_in/p->nchanls; j++) {
          *fp2++ = *fp1 * scaleFac;
          fp1 += p->nchanls;
        }

        csound->RealFFT2(csound, p->fwdsetup, IRblock);
        IRblock[p->Hlenpadded] = IRblock[1];
        IRblock[1] = IRblock[p->Hlenpadded + 1L] = FL(0.0);
        IRblock += (p->Hlenpadded + 2);
      }
    }

    csound->Free(csound, inbuf);
    csound->FileClose(csound, IRfile.fd);

    /* allocate the buffer saving recent input samples */
    csound->AuxAlloc(csound, p->Hlen * sizeof(MYFLT), &p->savedInput);
    p->inCount = 0;

    /* allocate the convolution work buffer */
    csound->AuxAlloc(csound, (p->Hlenpadded+2) * sizeof(MYFLT), &p->workBuf);
    p->workWrite = (MYFLT *)p->workBuf.auxp + p->Hlen;

    /* allocate the buffer holding recent past convolutions */
    csound->AuxAlloc(csound, (p->Hlenpadded+2) * p->numPartitions
             * p->nchanls * sizeof(MYFLT), &p->convBuf);
    p->curPart = 0;

    /* allocate circular output sample buffer */
    p->outBufSiz = sizeof(MYFLT) * p->nchanls *
      (p->Hlen >= (int32_t)CS_KSMPS ? p->Hlenpadded : 2*(int32_t)CS_KSMPS);
    csound->AuxAlloc(csound, p->outBufSiz, &p->output);
    p->outRead = (MYFLT *)p->output.auxp;

    /* if ksmps < hlen, we have to pad initial output to prevent a possible
       empty ksmps pass after a few initial generated buffers.  There is
       probably an equation to figure this out to reduce the delay, but
       I can't seem to figure it out */
    if (p->Hlen > (int32_t)CS_KSMPS) {
      p->outCount = p->Hlen + CS_KSMPS;
      p->outWrite = p->outRead + (p->nchanls * p->outCount);
    }
    else {
      p->outCount = 0;
      p->outWrite = p->outRead;
    }
    return OK;
}

static int32_t pconvset(CSOUND *csound, PCONVOLVE *p){
  return pconvset_(csound,p,0);
}

static int32_t pconvset_S(CSOUND *csound, PCONVOLVE *p){
  return pconvset_(csound,p,1);
}

static int32_t pconvolve(CSOUND *csound, PCONVOLVE *p)
{
    uint32_t nn, nsmps = CS_KSMPS;
    uint32_t offset = p->h.insdshead->ksmps_offset;
    uint32_t early  = nsmps - p->h.insdshead->ksmps_no_end;
    MYFLT  *ai = p->ain;
    MYFLT  *buf;
    MYFLT  *input = (MYFLT*) p->savedInput.auxp, *workWrite = p->workWrite;
    MYFLT  *a1 = p->ar1, *a2 = p->ar2, *a3 = p->ar3, *a4 = p->ar4;
    int32  i, j, count = p->inCount;
    int32  hlenpaddedplus2 = p->Hlenpadded+2;

    for (nn=0; nn<nsmps; nn++) {
      /* Read input audio and place into buffer. */
      input[count++] = *workWrite++ = (nn<offset||nn>early? FL(0.0) : ai[nn]);

      /* We have enough audio for a convolution. */
      if (count == p->Hlen) {
        MYFLT *dest = (MYFLT*) p->convBuf.auxp
                      + p->curPart * (p->Hlenpadded + 2) * p->nchanls;
        MYFLT *h = (MYFLT*) p->H.auxp;
        MYFLT *workBuf = (MYFLT*) p->workBuf.auxp;

        /* FFT the input (to create X) */
        *workWrite = FL(0.0); /* zero out nyquist bin from last fft result
                           - maybe is ignored for input(?) but just in case.. */
        csound->RealFFT2(csound, p->fwdsetup, workBuf);
        workBuf[p->Hlenpadded] = workBuf[1];
        workBuf[1] = workBuf[p->Hlenpadded + 1L] = FL(0.0);

        /* for every IR partition convolve and add to previous convolves */
        for (i = 0; i < p->numPartitions*p->nchanls; i++) {
          MYFLT *src = workBuf;
          int32_t n;
          for (n = 0; n <= (int32_t) p->Hlenpadded; n += 2) {
            dest[n + 0] += (h[n + 0] * src[n + 0]) - (h[n + 1] * src[n + 1]);
            dest[n + 1] += (h[n + 1] * src[n + 0]) + (h[n + 0] * src[n + 1]);
          }
          h += n; dest += n;
          if (UNLIKELY(dest == (MYFLT*)p->convBuf.endp))
            dest = (MYFLT*)p->convBuf.auxp;
        }

        /* Perform inverse FFT of the ondeck partion block */
        buf = (MYFLT*) p->convBuf.auxp
              + p->curPart * p->nchanls * hlenpaddedplus2;
        for (i = 0; i < p->nchanls; i++) {
          MYFLT *bufp;
          bufp = buf + i * hlenpaddedplus2;
          bufp[1] = bufp[p->Hlenpadded];
          bufp[p->Hlenpadded] = bufp[p->Hlenpadded + 1L] = FL(0.0);
          csound->RealFFT2(csound, p->invsetup, bufp);
        }
        /* We only take only the last Hlen output samples so we first zero out
           the first half for next time, then we copy the rest to output buffer
         */
        for (j = 0; j < p->nchanls; j++) {
          MYFLT *outp = p->outWrite + j;
          for (i = 0; i < p->Hlen; i++)
            *buf++ = FL(0.0);
          for (i = 0; i < p->Hlen; i++) {
            *outp = *buf;
            *buf++ = FL(0.0);
            outp += p->nchanls;
            if (outp >= (MYFLT *)p->output.endp)
              outp = (MYFLT *)p->output.auxp + j;
          }
          buf += 2;
        }
        p->outWrite += p->Hlen*p->nchanls;
        if (p->outWrite >= (MYFLT *)p->output.endp)
          p->outWrite -= p->outBufSiz/sizeof(MYFLT);
        p->outCount += p->Hlen;
        if (++p->curPart == p->numPartitions)
          /* advance to the next partition */
          p->curPart = 0;
        /* copy the saved input into the work buffer for next time around */
        memcpy(p->workBuf.auxp, input, p->Hlen * sizeof(MYFLT));
        count = 0;
        workWrite = (MYFLT *)p->workBuf.auxp + p->Hlen;
      }
    } /* end while */

    /* copy to output if we have enough samples [we always should
       except the first Hlen samples] */
    if (p->outCount >= (int32_t)CS_KSMPS) {
      uint32_t n;
      p->outCount -= CS_KSMPS;
      for (n=0; n < CS_KSMPS; n++) {
        switch (p->nchanls) {
        case 1:
          *a1++ = *p->outRead++;
          break;
        case 2:
          *a1++ = *p->outRead++;
          *a2++ = *p->outRead++;
          break;
        case 3:
          *a1++ = *p->outRead++;
          *a2++ = *p->outRead++;
          *a3++ = *p->outRead++;
          break;
        case 4:
          *a1++ = *p->outRead++;
          *a2++ = *p->outRead++;
          *a3++ = *p->outRead++;
          *a4++ = *p->outRead++;
          break;
        }
        if (p->outRead == p->output.endp)
          p->outRead = p->output.auxp;
      }
    }

    /* update struct */
    p->inCount = count;
    p->workWrite = workWrite;
    return OK;
}

static OENTRY localops[] =
  {
   { "convolve", sizeof(CONVOLVE),   0, 3, "mmmm", "aSo",
            (SUBR) cvset_S,    (SUBR) convolve   },
   { "convle",   sizeof(CONVOLVE),   0, 3, "mmmm", "aSo",
            (SUBR) cvset_S,    (SUBR) convolve   },
   { "pconvolve",sizeof(PCONVOLVE),  0, 3, "mmmm", "aSoo",
      (SUBR) pconvset_S,    (SUBR) pconvolve  },
   { "convolve.i", sizeof(CONVOLVE),   0, 3, "mmmm", "aio",
            (SUBR) cvset,    (SUBR) convolve   },
   { "convle.i",   sizeof(CONVOLVE),   0, 3, "mmmm", "aio",
            (SUBR) cvset,    (SUBR) convolve   },
   { "pconvolve.i",sizeof(PCONVOLVE),  0, 3, "mmmm", "aioo",
            (SUBR) pconvset,    (SUBR) pconvolve  }
};

int32_t ugens9_init_(CSOUND *csound)
{
    return csound->AppendOpcodes(csound, &(localops[0]),
                                 (int32_t) (sizeof(localops) / sizeof(OENTRY)));
}