File: vbap.c

package info (click to toggle)
csound 1%3A6.18.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 63,220 kB
  • sloc: ansic: 192,643; cpp: 14,149; javascript: 9,654; objc: 9,181; python: 3,376; java: 3,337; sh: 1,840; yacc: 1,255; xml: 985; perl: 635; lisp: 411; tcl: 341; lex: 217; makefile: 128
file content (1029 lines) | stat: -rw-r--r-- 35,427 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
/*
    vbap.c:

    Copyright (C) 2000 Ville Pulkki

    This file is part of Csound.

    The Csound Library is free software; you can redistribute it
    and/or modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    Csound is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with Csound; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
    02110-1301 USA
*/

/* vbap.c

assisting functions for VBAP
functions for loudspeaker table initialization
Re-written to take flexible number of outputs by JPff 2012 */


#include "csoundCore.h"
#include "interlocks.h"
#include "vbap.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include "interlocks.h"

#define MATSIZE (4)
#define ATORAD  (TWOPI_F / FL(360.0))

/* static void choose_ls_triplets(CSOUND *csound, ls *lss, */
/*                                ls_triplet_chain **ls_triplets, */
/*                                int32_t ls_amount, int32_t channels); */
static int32_t any_ls_inside_triplet(int32_t, int32_t, int32_t, ls[], int32_t);
static void add_ldsp_triplet(CSOUND *csound, int32_t i, int32_t j, int32_t k,
                             ls_triplet_chain **ls_triplets,
                             ls *lss);
static void calculate_3x3_matrixes(CSOUND *csound,
                                   ls_triplet_chain *ls_triplets,
                                   ls lss[], int32_t ls_amount, int32_t ind);
static void choose_ls_tuplets(CSOUND *csound, ls lss[],
                              ls_triplet_chain **ls_triplets,
                              int32_t ls_amount, int32_t ind);
static void sort_2D_lss(ls lss[], int32_t sorted_lss[],
                        int32_t ls_amount);

static inline MYFLT vec_prod(CART_VEC v1, CART_VEC v2)
{
    return (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z);
}

static inline MYFLT vec_length(CART_VEC v1)
{
    return SQRT(v1.x*v1.x + v1.y*v1.y + v1.z*v1.z);
}

static MYFLT *create_ls_table(CSOUND *csound, size_t cnt, int32_t ind)
{
    char name[24];
    snprintf(name, 24, "vbap_ls_table_%d", ind);
    csound->DestroyGlobalVariable(csound, name);
    if (UNLIKELY(csound->CreateGlobalVariable(csound, name,
                                              cnt * sizeof(MYFLT)) != 0)) {
      csound->ErrorMsg(csound, Str("vbap: error allocating loudspeaker table"));
      return NULL;
    }
    return (MYFLT*) (csound->QueryGlobalVariableNoCheck(csound, name));
}

void calc_vbap_gns(int32_t ls_set_am, int dim, LS_SET *sets,
                   MYFLT *gains, int32_t ls_amount,
                   CART_VEC cart_dir)
     /* Selects a vector base of a virtual source.
        Calculates gain factors in that base. */
{
    int32_t i,j,k, tmp2;
    MYFLT vec[3], tmp;
    /* direction of the virtual source in cartesian coordinates*/
    vec[0] = cart_dir.x;
    vec[1] = cart_dir.y;
    vec[2] = cart_dir.z;


    for (i=0; i< ls_set_am; i++) {
      sets[i].set_gains[0] = FL(0.0);
      sets[i].set_gains[1] = FL(0.0);
      sets[i].set_gains[2] = FL(0.0);
      sets[i].smallest_wt  = FL(1000.0);
      sets[i].neg_g_am = 0;
  }

    for (i=0; i< ls_set_am; i++) {
      for (j=0; j< dim; j++) {
        for (k=0; k< dim; k++) {
          sets[i].set_gains[j] += vec[k] * sets[i].ls_mx[((dim * j )+ k)];
        }
        if (sets[i].smallest_wt > sets[i].set_gains[j])
          sets[i].smallest_wt = sets[i].set_gains[j];
        if (sets[i].set_gains[j] < -FL(0.05))
          sets[i].neg_g_am++;
      }
    }



    j=0;
    tmp = sets[0].smallest_wt;
    tmp2=sets[0].neg_g_am;
    for (i=1; i< ls_set_am; i++) {
      if (sets[i].neg_g_am < tmp2) {
        tmp = sets[i].smallest_wt;
        tmp2=sets[i].neg_g_am;
        j=i;
      }
      else if (sets[i].neg_g_am == tmp2) {
        if (sets[i].smallest_wt > tmp) {
          tmp = sets[i].smallest_wt;
          tmp2=sets[i].neg_g_am;
          j=i;
        }
      }
    }


    if (sets[j].set_gains[0]<=FL(0.0) &&
        sets[j].set_gains[1]<=FL(0.0) &&
        sets[j].set_gains[2]<=FL(0.0)) {
      sets[j].set_gains[0] = FL(1.0);
      sets[j].set_gains[1] = FL(1.0);
      sets[j].set_gains[2] = FL(1.0);
    }

    memset(gains, 0, ls_amount*sizeof(MYFLT));

    gains[sets[j].ls_nos[0]-1] = sets[j].set_gains[0];
    gains[sets[j].ls_nos[1]-1] = sets[j].set_gains[1];
    if (dim==3) gains[sets[j].ls_nos[2]-1] = sets[j].set_gains[2];

    for (i=0;i<ls_amount;i++) {
      if (gains[i]<LOWEST_ACCEPTABLE_WT)
        gains[i]=FL(0.0);
    }
}

void scale_angles(ANG_VEC *avec)
     /* -180 < azi < 180
        -90 < ele < 90 */
{
    while (avec->azi > FL(180.0))
      avec->azi -= FL(360.0);
    while (avec->azi < -FL(180.0))
      avec->azi += FL(360.0);
    if (avec->ele > FL(90.0))
      avec->ele = FL(90.0);
    if (avec->ele < -FL(90.0))
      avec->ele = -FL(90.0);
}

void normalize_wts(OUT_WTS *wts)
     /* performs equal-power normalization to gain factors*/
{
    double tmp;
    MYFLT tmp1;
    if (wts->wt1 < 0) wts->wt1 = FL(0.0);
    if (wts->wt2 < 0) wts->wt2 = FL(0.0);
    if (wts->wt3 < 0) wts->wt3 = FL(0.0);

    tmp  = (double)wts->wt1 * wts->wt1;
    tmp += (double)wts->wt2 * wts->wt2;
    tmp += (double)wts->wt3 * wts->wt3;

    tmp = sqrt(tmp);
    tmp1 = (MYFLT)(1.0 / tmp);
    wts->wt1 *= tmp1;
    wts->wt2 *= tmp1;
    wts->wt3 *= tmp1;
}

void angle_to_cart(ANG_VEC avec, CART_VEC *cvec)
     /* conversion */
{
    /* length unattended */
    //MYFLT atorad = (TWOPI_F / FL(360.0));
    cvec->x = (MYFLT) (cos((double) (avec.azi * ATORAD)) *
                       cos((double) (avec.ele * ATORAD)));
    cvec->y = (MYFLT) (sin((double) (avec.azi * ATORAD)) *
                       cos((double) (avec.ele * ATORAD)));
    cvec->z = (MYFLT) (sin((double) (avec.ele * ATORAD)));
}

void cart_to_angle(CART_VEC cvec, ANG_VEC *avec)
     /* conversion */
{
    MYFLT tmp, tmp2, tmp3, tmp4;
    //MYFLT atorad = (TWOPI_F / FL(360.0));

    tmp3 = SQRT(FL(1.0) - cvec.z*cvec.z);
    if (FABS(tmp3) > FL(0.001)) {
      tmp4 = (cvec.x / tmp3);
      if (tmp4 > FL(1.0)) tmp4 = FL(1.0);
      if (tmp4 < -FL(1.0)) tmp4 = -FL(1.0);
      tmp = ACOS(tmp4 );
    }
    else {
      tmp = FL(10000.0);
    }
    if (FABS(cvec.y) <= FL(0.001))
      tmp2 = FL(1.0);
    else
      tmp2 = cvec.y / FABS(cvec.y);
    tmp *= tmp2;
    if (FABS(tmp) <= PI_F) {
      avec->azi =  tmp;
      avec->azi /= ATORAD;
    }
    avec->ele = ASIN(cvec.z);
    avec->length = SQRT(cvec.x * cvec.x + cvec.y * cvec.y + cvec.z * cvec.z);
    avec->ele /= ATORAD;
}

void angle_to_cart_II(ANG_VEC *from, CART_VEC *to)
     /* conversion, double*/
{
    MYFLT ang2rad = TWOPI_F / FL(360.0);
    to->x= COS(from->azi * ang2rad) * COS(from->ele * ang2rad);
    to->y= SIN(from->azi * ang2rad) * COS(from->ele * ang2rad);
    to->z= SIN(from->ele * ang2rad);
}

MYFLT vol_p_side_lgth(int32_t i, int32_t j,int32_t k, ls  lss[] )
{
  /* calculate volume of the parallelepiped defined by the loudspeaker
     direction vectors and divide it with total length of the triangle sides.
     This is used when removing too narrow triangles. */

    MYFLT volper, lgth;
    CART_VEC xprod;
    cross_prod(lss[i].coords, lss[j].coords, &xprod);
    volper = FABS(vec_prod(xprod, lss[k].coords));
    lgth =    FABS(vec_angle(lss[i].coords,lss[j].coords))
            + FABS(vec_angle(lss[i].coords,lss[k].coords))
            + FABS(vec_angle(lss[j].coords,lss[k].coords));
    if (LIKELY(lgth>FL(0.00001)))
      return volper / lgth;
    else
      return FL(0.0);
}

static void choose_ls_triplets(CSOUND *csound, ls *lss,
                               struct ls_triplet_chain **ls_triplets,
                               int32_t ls_amount)
  /* Selects the loudspeaker triplets, and
     calculates the inversion matrices for each selected triplet.
     A line (connection) is drawn between each loudspeaker. The lines
     denote the sides of the triangles. The triangles should not be
     intersecting. All crossing connections are searched and the
     longer connection is erased. This yields non-intesecting triangles,
     which can be used in panning.*/
{
    int32_t i, j, k, l, table_size;
    int32_t *connections;
/*  int32_t *i_ptr; */
    MYFLT *distance_table;
    int32_t *distance_table_i;
    int32_t *distance_table_j;
    MYFLT distance;
    struct ls_triplet_chain *trip_ptr, *prev, *tmp_ptr;

    if (UNLIKELY(ls_amount == 0)) {
      csound->ErrorMsg(csound, Str("Number of loudspeakers is zero\nExiting"));
      return;
    }

    connections = csound->Calloc(csound, ls_amount * ls_amount * sizeof(int32_t));
    distance_table =
      csound->Calloc(csound, ((ls_amount * (ls_amount - 1)) / 2)* sizeof(MYFLT));
    distance_table_i =
      csound->Calloc(csound, ((ls_amount * (ls_amount - 1)) / 2)* sizeof(int32_t));
    distance_table_j =
      csound->Calloc(csound, ((ls_amount * (ls_amount - 1)) / 2)* sizeof(int32_t));

/*  i_ptr = (int32_t *) connections; */
/*  for (i=0;i< ((CHANNELS) * (CHANNELS )); i++) */
/*    *(i_ptr++) = 0; */

    for (i=0;i<ls_amount;i++)
    for (j=i+1;j<ls_amount;j++)
      for (k=j+1;k<ls_amount;k++) {
        if (vol_p_side_lgth(i,j, k, lss) > MIN_VOL_P_SIDE_LGTH) {
          connections[i+ls_amount*j]=1;
          connections[j+ls_amount*i]=1;
          connections[i+ls_amount*k]=1;
          connections[k+ls_amount*i]=1;
          connections[j+ls_amount*k]=1;
          connections[k+ls_amount*j]=1;
          add_ldsp_triplet(csound, i, j, k, ls_triplets, lss);
        }
      }

  /*calculate distancies between all lss and sorting them*/
    table_size =(((ls_amount - 1) * (ls_amount)) / 2);
    for (i=0;i<table_size; i++)
      distance_table[i] = FL(100000.0);

    for (i=0;i<ls_amount;i++) {
      for (j=(i+1);j<ls_amount; j++) {
        if (connections[i+ls_amount*j] == 1) {
          distance = FABS(vec_angle(lss[i].coords,lss[j].coords));
          k=0;

          while (distance_table[k] < distance)
            k++;
          for (l=(table_size - 1);l > k;l--) {
            distance_table[l] = distance_table[l-1];
            distance_table_i[l] = distance_table_i[l-1];
            distance_table_j[l] = distance_table_j[l-1];
          }
          distance_table[k] = distance;
          distance_table_i[k] = i;
          distance_table_j[k] = j;
        }
        else
          table_size--;
      }
    }

    /* disconnecting connections which are crossing shorter ones,
       starting from shortest one and removing all that cross it,
       and proceeding to next shortest */
    for (i=0; i<(table_size); i++) {
      int32_t fst_ls = distance_table_i[i];
      int32_t sec_ls = distance_table_j[i];
      if (connections[fst_ls+ls_amount*sec_ls] == 1)
        for (j=0; j<ls_amount; j++)
          for (k=j+1; k<ls_amount; k++)
            if ( (j!=fst_ls) && (k != sec_ls) && (k!=fst_ls) && (j != sec_ls))
              if (lines_intersect(fst_ls, sec_ls, j,k,lss) == 1) {
                connections[j+ls_amount*k] = 0;
                connections[k+ls_amount*j] = 0;
              }
    }

    /* remove triangles which had crossing sides
       with smaller triangles or include loudspeakers*/

    trip_ptr = *ls_triplets;
    prev = NULL;
    while (trip_ptr != NULL) {
      i = trip_ptr->ls_nos[0];
      j = trip_ptr->ls_nos[1];
      k = trip_ptr->ls_nos[2];
      if (connections[i+ls_amount*j] == 0 ||
          connections[i+ls_amount*k] == 0 ||
          connections[j+ls_amount*k] == 0 ||
          any_ls_inside_triplet(i,j,k,lss,ls_amount) == 1) {
        if (prev != NULL) {
          prev->next = trip_ptr->next;
          tmp_ptr = trip_ptr;
          trip_ptr = trip_ptr->next;
          csound->Free(csound, tmp_ptr);
        }
        else {
          *ls_triplets = trip_ptr->next;
          tmp_ptr = trip_ptr;
          trip_ptr = trip_ptr->next;
          csound->Free(csound, tmp_ptr);
        }
      }
      else {
        prev = trip_ptr;
        trip_ptr = trip_ptr->next;
      }
    }
    csound->Free(csound,connections);
    csound->Free(csound,distance_table);
    csound->Free(csound,distance_table_i);
    csound->Free(csound,distance_table_j);
}

/* returns 1 if there is loudspeaker(s) inside given ls triplet */

static int32_t any_ls_inside_triplet(int32_t a, int32_t b, int32_t c, ls lss[],
                                 int32_t ls_amount)
{
    MYFLT invdet;
    CART_VEC *lp1, *lp2, *lp3;
    MYFLT invmx[9];
    int32_t i,j;
    MYFLT tmp;
    int32_t any_ls_inside, this_inside;

    lp1 =  &(lss[a].coords);
    lp2 =  &(lss[b].coords);
    lp3 =  &(lss[c].coords);

    /* matrix inversion */
    invdet = FL(1.0) / (  lp1->x * ((lp2->y * lp3->z) - (lp2->z * lp3->y))
                       - lp1->y * ((lp2->x * lp3->z) - (lp2->z * lp3->x))
                       + lp1->z * ((lp2->x * lp3->y) - (lp2->y * lp3->x)));

    invmx[0] = ((lp2->y * lp3->z) - (lp2->z * lp3->y)) * invdet;
    invmx[3] = ((lp1->y * lp3->z) - (lp1->z * lp3->y)) * -invdet;
    invmx[6] = ((lp1->y * lp2->z) - (lp1->z * lp2->y)) * invdet;
    invmx[1] = ((lp2->x * lp3->z) - (lp2->z * lp3->x)) * -invdet;
    invmx[4] = ((lp1->x * lp3->z) - (lp1->z * lp3->x)) * invdet;
    invmx[7] = ((lp1->x * lp2->z) - (lp1->z * lp2->x)) * -invdet;
    invmx[2] = ((lp2->x * lp3->y) - (lp2->y * lp3->x)) * invdet;
    invmx[5] = ((lp1->x * lp3->y) - (lp1->y * lp3->x)) * -invdet;
    invmx[8] = ((lp1->x * lp2->y) - (lp1->y * lp2->x)) * invdet;

    any_ls_inside = 0;
    for (i=0; i< ls_amount; i++) {
      if (i != a && i!=b && i != c) {
        this_inside = 1;
        for (j=0; j< 3; j++) {
          tmp = lss[i].coords.x * invmx[0 + j*3];
          tmp += lss[i].coords.y * invmx[1 + j*3];
          tmp += lss[i].coords.z * invmx[2 + j*3];
          if (tmp < -FL(0.001))
            this_inside = 0;
        }
        if (this_inside == 1)
          any_ls_inside=1;
      }
    }
    return any_ls_inside;
}

static void add_ldsp_triplet(CSOUND *csound, int32_t i, int32_t j, int32_t k,
                             struct ls_triplet_chain **ls_triplets,
                             ls lss[])
{
    IGN(lss);
    struct ls_triplet_chain *ls_ptr, *prev;
    ls_ptr = *ls_triplets;
    prev = NULL;

  /*printf("Adding triangle %d %d %d %x... \n",i,j,k,ls_ptr);*/
    while (ls_ptr != NULL) {
      /*printf("ls_ptr %x %x\n",ls_ptr,ls_ptr->next);*/
      prev = ls_ptr;
      ls_ptr = ls_ptr->next;
    }
    ls_ptr = (struct ls_triplet_chain*)
      csound->Malloc(csound, sizeof(struct ls_triplet_chain));
    if (prev == NULL)
      *ls_triplets = ls_ptr;
    else
      prev->next = ls_ptr;
    ls_ptr->next = NULL;
    ls_ptr->ls_nos[0] = i;
    ls_ptr->ls_nos[1] = j;
    ls_ptr->ls_nos[2] = k;
    /*printf("added.\n");*/
}

MYFLT angle_in_base(CART_VEC vb1,CART_VEC vb2,CART_VEC vec)
{
    MYFLT tmp1,tmp2;
    tmp1 = vec_prod(vec,vb2);
    if (FABS(tmp1) <= FL(0.001))
      tmp2 = FL(1.0);
    else
      tmp2 = tmp1 / FABS(tmp1);
    return (vec_angle(vb1,vec) * tmp2);
}

MYFLT vec_angle(CART_VEC v1, CART_VEC v2)
{
    MYFLT inner= ((v1.x*v2.x + v1.y*v2.y + v1.z*v2.z)/
                  (vec_length(v1) * vec_length(v2)));
    if (inner > FL(1.0))
      inner= FL(1.0);
    if (inner < -FL(1.0))
      inner = -FL(1.0);
    return ACOS(inner);
}

void vec_mean(CART_VEC v1, CART_VEC v2, CART_VEC *v3)
{
    v3->x=(v1.x+v2.x)*FL(0.5);
    v3->y=(v1.y+v2.y)*FL(0.5);
    v3->z=(v1.z+v2.z)*FL(0.5);
}

void cross_prod(CART_VEC v1,CART_VEC v2,
                CART_VEC *res)
{
    MYFLT length;
    res->x = (v1.y * v2.z ) - (v1.z * v2.y);
    res->y = (v1.z * v2.x ) - (v1.x * v2.z);
    res->z = (v1.x * v2.y ) - (v1.y * v2.x);

    length= vec_length(*res);
    res->x /= length;
    res->y /= length;
    res->z /= length;
}

void vec_print(CSOUND *csound, CART_VEC v)
{
    csound->Message(csound, "vec_print %f %f %f\n", v.x, v.y,v.z);

}

int32_t lines_intersect(int32_t i,int32_t j,int32_t k,int32_t l,ls  lss[])
  /* checks if two lines intersect on 3D sphere
     see theory in paper Pulkki, V. Lokki, T. "Creating Auditory Displays
     with Multiple Loudspeakers Using VBAP: A Case Study with
     DIVA Project" in International Conference on
     Auditory Displays -98. E-mail Ville.Pulkki@hut.fi
     if you want to have that paper.*/
{
    CART_VEC v1;
    CART_VEC v2;
    CART_VEC v3, neg_v3;
    MYFLT dist_ij,dist_kl,dist_iv3,dist_jv3,dist_inv3,dist_jnv3;
    MYFLT dist_kv3,dist_lv3,dist_knv3,dist_lnv3;

    cross_prod(lss[i].coords,lss[j].coords,&v1);
    cross_prod(lss[k].coords,lss[l].coords,&v2);
    cross_prod(v1,v2,&v3);

    neg_v3.x= FL(0.0) - v3.x;
    neg_v3.y= FL(0.0) - v3.y;
    neg_v3.z= FL(0.0) - v3.z;

    dist_ij = (vec_angle(lss[i].coords,lss[j].coords));
    dist_kl = (vec_angle(lss[k].coords,lss[l].coords));
    dist_iv3 = (vec_angle(lss[i].coords,v3));
    dist_jv3 = (vec_angle(v3,lss[j].coords));
    dist_inv3 = (vec_angle(lss[i].coords,neg_v3));
    dist_jnv3 = (vec_angle(neg_v3,lss[j].coords));
    dist_kv3 = (vec_angle(lss[k].coords,v3));
    dist_lv3 = (vec_angle(v3,lss[l].coords));
    dist_knv3 = (vec_angle(lss[k].coords,neg_v3));
    dist_lnv3 = (vec_angle(neg_v3,lss[l].coords));

    /* if one of loudspeakers is close to crossing point, don't do anything*/
    if (FABS(dist_iv3) <= FL(0.01) || FABS(dist_jv3) <= FL(0.01) ||
        FABS(dist_kv3) <= FL(0.01) || FABS(dist_lv3) <= FL(0.01) ||
        FABS(dist_inv3) <= FL(0.01) || FABS(dist_jnv3) <= FL(0.01) ||
        FABS(dist_knv3) <= FL(0.01) || FABS(dist_lnv3) <= FL(0.01) )
      return(0);

    if (((FABS(dist_ij - (dist_iv3 + dist_jv3)) <= FL(0.01) ) &&
         (FABS(dist_kl - (dist_kv3 + dist_lv3))  <= FL(0.01))) ||
        ((FABS(dist_ij - (dist_inv3 + dist_jnv3)) <= FL(0.01))  &&
         (FABS(dist_kl - (dist_knv3 + dist_lnv3)) <= FL(0.01) ))) {
      return (1);
    }
    else {
      return (0);
    }
}

static inline int32_t vbap_ls_init_sr (CSOUND *csound, int32_t dim, int32_t count,
                            MYFLT **f, int32_t layout)
     /* Inits the loudspeaker data. Calls choose_ls_tuplets or _triplets
        according to current dimension. The inversion matrices are
        stored in transposed form to ease calculation at run time.*/
{
    struct ls_triplet_chain *ls_triplets = NULL;
    ls *lss = malloc(sizeof(ls)*count);

    ANG_VEC a_vector;
    CART_VEC c_vector;
    int32_t i=0,j;

    //dim = (int32_t) *p->dim;
    csound->Message(csound, "dim : %d\n",dim);
    if (UNLIKELY(!((dim==2) || (dim == 3)))) {
      free(lss);
      csound->ErrorMsg(csound,
                       Str("Error in loudspeaker dimension. %d not permitted"),
                       dim);
      return NOTOK;
    }
    //count = (int32_t) *p->ls_amount;
    for (j=1;j<=count;j++) {
      if (dim == 3) {
        a_vector.azi= (MYFLT) *f[2*j-2];
        a_vector.ele= (MYFLT) *f[2*j-1];
      }
      else if (dim == 2) {
        a_vector.azi= (MYFLT) *f[j-1];
        a_vector.ele=FL(0.0);
      }
      angle_to_cart_II(&a_vector,&c_vector);
      lss[i].coords.x = c_vector.x;
      lss[i].coords.y = c_vector.y;
      lss[i].coords.z = c_vector.z;
      lss[i].angles.azi = a_vector.azi;
      lss[i].angles.ele = a_vector.ele;
      lss[i].angles.length = FL(1.0);
      /* printf("**** lss[%d]: (%g %g %g) %g %g\n", i, lss[i].coords.x, */
      /*        lss[i].coords.y, lss[i].coords.z, a_vector.azi, a_vector.ele); */
      i++;
    }
    //ls_amount = (int32_t)*p->ls_amount;
    if (UNLIKELY(count < dim)) {
      free(lss);
      csound->ErrorMsg(csound, Str("Too few loudspeakers"));
      return NOTOK;
    }

    if (dim == 3) {
      choose_ls_triplets(csound, lss, &ls_triplets, count);
      calculate_3x3_matrixes(csound, ls_triplets, lss, count, layout);
    }
    else if (dim ==2) {
      choose_ls_tuplets(csound, lss, &ls_triplets, count, layout);
    }
    free(lss);
    return OK;
}

int32_t vbap_ls_init (CSOUND *csound, VBAP_LS_INIT *p)
{
    int32_t dim = (int32_t) *p->dim;
    MYFLT  layout = (*p->dim-dim)*100;
    return vbap_ls_init_sr(csound, dim, (int32_t) *p->ls_amount,
                           p->f, round(layout));
}

int32_t vbap_ls_inita (CSOUND *csound, VBAP_LS_INITA *p)
{
    int32_t dim = (int32_t) *p->dim;
    MYFLT  layout = (*p->dim-dim)*100;
    int32_t i, n = (int32_t)*p->ls_amount;
    /* if (n>CHANNELS) */
    /*   return csound->InitError(csound, Str("Too many speakers (%n)\n"), n); */
    if (UNLIKELY(n>p->a->sizes[0]))
      return csound->InitError(csound, Str("Too little data speakers (%d)\n"),
                              n>p->a->sizes[0]);
    MYFLT  **f = csound->Malloc(csound, 2*sizeof(MYFLT*)*n);
    // Transfer values to pointers
    for (i=0; i<2*n; i++) f[i] = &(p->a->data[i]);
    n = vbap_ls_init_sr(csound, dim, n, f, round(layout));
    csound->Free(csound, f);
    return n;
}

static void calculate_3x3_matrixes(CSOUND *csound,
                                   struct ls_triplet_chain *ls_triplets,
                                   ls lss[], int32_t ls_amount, int32_t ind)
     /* Calculates the inverse matrices for 3D */
{
    MYFLT invdet;
    CART_VEC *lp1, *lp2, *lp3;
    MYFLT *ls_table, *invmx;
    MYFLT *ptr;
    struct ls_triplet_chain *tr_ptr = ls_triplets;
    int32_t triplet_amount = 0, i,j,k;

    if (UNLIKELY(tr_ptr == NULL)) {
      csound->ErrorMsg(csound, Str("Not valid 3-D configuration"));
      return;
    }

    /* counting triplet amount */
    while (tr_ptr != NULL) {
      triplet_amount++;
      tr_ptr = tr_ptr->next;
    }

    /* calculations and data storage to a global array */
    ls_table = create_ls_table(csound, triplet_amount * 12 + 3, ind);
    ls_table[0] = FL(3.0);  /* dimension */
    ls_table[1] = (MYFLT) ls_amount;
    ls_table[2] = (MYFLT) triplet_amount;
    tr_ptr = ls_triplets;
    ptr = (MYFLT *) &(ls_table[3]);
    while (tr_ptr != NULL) {
      lp1 =  &(lss[tr_ptr->ls_nos[0]].coords);
      lp2 =  &(lss[tr_ptr->ls_nos[1]].coords);
      lp3 =  &(lss[tr_ptr->ls_nos[2]].coords);

      /* matrix inversion */
      invmx = tr_ptr->inv_mx;
      invdet = FL(1.0) / (  lp1->x * ((lp2->y * lp3->z) - (lp2->z * lp3->y))
                         - lp1->y * ((lp2->x * lp3->z) - (lp2->z * lp3->x))
                         + lp1->z * ((lp2->x * lp3->y) - (lp2->y * lp3->x)));

      invmx[0] = ((lp2->y * lp3->z) - (lp2->z * lp3->y)) * invdet;
      invmx[3] = ((lp1->y * lp3->z) - (lp1->z * lp3->y)) * -invdet;
      invmx[6] = ((lp1->y * lp2->z) - (lp1->z * lp2->y)) * invdet;
      invmx[1] = ((lp2->x * lp3->z) - (lp2->z * lp3->x)) * -invdet;
      invmx[4] = ((lp1->x * lp3->z) - (lp1->z * lp3->x)) * invdet;
      invmx[7] = ((lp1->x * lp2->z) - (lp1->z * lp2->x)) * -invdet;
      invmx[2] = ((lp2->x * lp3->y) - (lp2->y * lp3->x)) * invdet;
      invmx[5] = ((lp1->x * lp3->y) - (lp1->y * lp3->x)) * -invdet;
      invmx[8] = ((lp1->x * lp2->y) - (lp1->y * lp2->x)) * invdet;
      for (i=0;i<3;i++) {
        *(ptr++) = (MYFLT) tr_ptr->ls_nos[i]+1;
      }
      for (i=0;i<9;i++) {
        *(ptr++) = (MYFLT) invmx[i];
      }
      tr_ptr = tr_ptr->next;
    }

    k = 3;
    csound->Warning(csound, Str("\nConfigured loudspeakers\n"));
    for (i = 0; i < triplet_amount; i++) {
      csound->Warning(csound, Str("Triplet %d Loudspeakers: "), i);
      for (j = 0; j < 3; j++) {
        csound->Warning(csound, "%d ", (int32_t) ls_table[k++]);
      }
      csound->Warning(csound, "\n");

    /* printf("\nMatrix ");  */
    /*   for (j = 0; j < 9; j++) { */
    /*     printf("%f ", ls_table[k]);  */
    /*     k++; */
    /*   } */
    /* printf("\n\n"); */
    }
}

static void choose_ls_tuplets(CSOUND *csound,
                              ls lss[],
                              ls_triplet_chain **ls_triplets,
                              int32_t ls_amount, int32_t ind)
     /* selects the loudspeaker pairs, calculates the inversion
        matrices and stores the data to a global array */
{
    IGN(ls_triplets);
    int32_t i, j, k;
    int32_t *sorted_lss = (int32_t*)malloc(sizeof(int32_t)*ls_amount);
    int32_t *exist = (int32_t*)calloc(1,sizeof(int32_t)*ls_amount);
    int32_t amount = 0;
    MYFLT *inv_mat = (MYFLT*)malloc(MATSIZE*sizeof(MYFLT)*ls_amount),
          *ls_table, *ptr;
    //int32_t ftable_size;

    /* sort loudspeakers according their aximuth angle */
    sort_2D_lss(lss,sorted_lss,ls_amount);

    /* adjacent loudspeakers are the loudspeaker pairs to be used.*/
    for (i=0;i<(ls_amount-1);i++) {
      csound->Message(csound, "***%d %d %f %f\n",sorted_lss[i],sorted_lss[i+1],
                      lss[sorted_lss[i]].angles.azi,
                      lss[sorted_lss[i+1]].angles.azi);
      if (LIKELY((lss[sorted_lss[i+1]].angles.azi -
                  lss[sorted_lss[i]].angles.azi) <= (PI - 0.0175))) {
        if (LIKELY(calc_2D_inv_tmatrix( lss[sorted_lss[i]].angles.azi,
                                        lss[sorted_lss[i+1]].angles.azi,
                                        &inv_mat[MATSIZE*i]) != 0)) {
          exist[i]=1;
          amount++;
        }
      }
      else  csound->Warning(csound, Str("Pair of speakers at %f and %f ignored\n"),
                            lss[sorted_lss[i]].angles.azi*FL(180.0)/PI_F,
                            lss[sorted_lss[i+1]].angles.azi*FL(180.0)/PI_F);
    }

    if (LIKELY(((TWOPI_F - lss[sorted_lss[ls_amount-1]].angles.azi)
                +lss[sorted_lss[0]].angles.azi) < (PI - 0.0175))) {
      //printf("**less than PI type 2- 0.175\n");
      if (LIKELY(calc_2D_inv_tmatrix(lss[sorted_lss[ls_amount-1]].angles.azi,
                                     lss[sorted_lss[0]].angles.azi,
                                     &inv_mat[MATSIZE*(ls_amount-1)]) != 0)) {
        exist[ls_amount-1]=1;
        amount++;
      }
    }
    else  csound->Warning(csound, Str("Pair of speakers at %f and %f ignored\n"),
                          lss[sorted_lss[ls_amount-1]].angles.azi*FL(180.0)/PI_F,
                          lss[sorted_lss[0]].angles.azi*FL(180.0)/PI_F);

    if (UNLIKELY(amount==0)) {
      csound->InitError(csound, Str("insufficient valid speakers"));
      free(sorted_lss); free(exist); free(inv_mat);
      return;
    }

#if 0
    if ( amount*6 + 6 <= 16) ftable_size = 16;
    else if ( amount*6 + 6 <= 32) ftable_size = 32;
    else if ( amount*6 + 6 <= 64) ftable_size = 64;
    else if ( amount*6 + 6 <= 128) ftable_size = 128;
    else if ( amount*6 + 6 <= 256) ftable_size = 256;
    else if ( amount*6 + 6 <= 1024) ftable_size = 1024;
    csound->Message(csound,
                    "Loudspeaker matrices calculated with configuration : ");
    for (i=0; i< ls_amount; i++)
      csound->Message(csound, "%.1f ", lss[i].angles.azi / ATORAD);
    csound->Message(csound, "\n");
#endif
    ls_table = create_ls_table(csound, amount * 6 + 3 + 100, ind);
    ls_table[0] = FL(2.0);  /* dimension */
    ls_table[1] = (MYFLT) ls_amount;
    ls_table[2] = (MYFLT) amount;
    ptr = &(ls_table[3]);
    for (i=0;i<ls_amount - 1;i++) {
      if (exist[i] == 1) {
        *(ptr++) = (MYFLT)sorted_lss[i]+1;
        *(ptr++) = (MYFLT)sorted_lss[i+1]+1;
        for (j=0;j<MATSIZE;j++) {
          /*printf("iv_mat i=%d a=%d [%d] %f\n",
            i, ls_amount, i*MATSIZE+j, inv_mat[i*ls_amount+j]); */
          *(ptr++) = inv_mat[i*MATSIZE+j];
        }
      }
    }
    if (exist[ls_amount-1] == 1) {
      *(ptr++) = (MYFLT)sorted_lss[ls_amount-1]+1;
      *(ptr++) = (MYFLT)sorted_lss[0]+1;
      for (j=0;j<MATSIZE;j++) {
/*         printf("iv_mat[%d] %f\n", (ls_amount-1)*MATSIZE+j, */
/*                inv_mat[(ls_amount-1)*MATSIZE+j]); */
        *(ptr++) = inv_mat[(ls_amount-1)*MATSIZE+j];
      }
    }
    k=3;
    csound->Message(csound, Str("\nConfigured loudspeakers\n"));
    for (i=0; i < amount; i++) {
      csound->Message(csound, Str("Pair %d Loudspeakers: "), i);
      for (j=0; j < 2; j++) {
        csound->Message(csound, "%d ", (int32_t) ls_table[k++]);
      }

      csound->Message(csound, "\nMatrix ");
      for (j=0; j < MATSIZE; j++) {
        csound->Message(csound, "%f ", ls_table[k]);
        k++;
      }
      csound->Message(csound, "\n\n");
    }
    free(sorted_lss); free(exist); free(inv_mat);
}

static void sort_2D_lss(ls lss[], int32_t sorted_lss[],
                        int32_t ls_amount)
{
    int32_t i,j,index=-1;
    MYFLT tmp, tmp_azi;

    /* Transforming angles between -180 and 180 */
    for (i=0; i<ls_amount; i++) {
      angle_to_cart_II(&lss[i].angles, &lss[i].coords);
      lss[i].angles.azi = ACOS(lss[i].coords.x);
      if (FABS(lss[i].coords.y) <= FL(0.001))
        tmp = FL(1.0);
      else
        tmp = lss[i].coords.y / FABS(lss[i].coords.y);
      lss[i].angles.azi *= tmp;
      //printf("***tulos %f\n",    lss[i].angles.azi);
    }
    for (i=0;i<ls_amount;i++) {
      tmp = FL(2000.0);
      for (j=0; j<ls_amount;j++) {
        if (lss[j].angles.azi <= tmp) {
          tmp=lss[j].angles.azi;
          index = j;
        }
      }
      sorted_lss[i]=index;
      tmp_azi = (lss[index].angles.azi);
      lss[index].angles.azi = (tmp_azi + FL(4000.0));
    }
    for (i=0;i<ls_amount;i++) {
      tmp_azi = (lss[i].angles.azi);
      lss[i].angles.azi = (tmp_azi - FL(4000.0));
    }
}

int32_t calc_2D_inv_tmatrix(MYFLT azi1,MYFLT azi2, MYFLT inv_mat[MATSIZE])
{
    MYFLT x1,x2,x3,x4; /* x1 x3 */
    MYFLT det;
    x1 = COS(azi1 );
    x2 = SIN(azi1 );
    x3 = COS(azi2 );
    x4 = SIN(azi2 );
    det = (x1 * x4) - ( x3 * x2 );
    if (FABS(det) <= FL(0.001)) {
      //printf("unusable*** pair, det %f\n",det);
      inv_mat[0] = FL(0.0);
      inv_mat[1] = FL(0.0);
      inv_mat[2] = FL(0.0);
      inv_mat[3] = FL(0.0);
      return 0;
    }
    else {
      //printf("***inv x (%f,%f,%f,%f): det=%f\n", x4, -x3, -x2, x1, det);
      inv_mat[0] =  (x4 / det);
      inv_mat[1] =  (-x3 / det);
      inv_mat[2] =  (-x2 / det);
      inv_mat[3] =  (x1 / det);
      return 1;
    }
}

void new_spread_dir(CART_VEC *spreaddir, CART_VEC vscartdir,
                    CART_VEC spread_base, MYFLT azi, MYFLT spread)
{
    MYFLT beta,gamma;
    MYFLT a,b;
    MYFLT power;
    ANG_VEC tmp;
    gamma = ACOS(vscartdir.x * spread_base.x +
                 vscartdir.y * spread_base.y +
                 vscartdir.z * spread_base.z)/PI_F*FL(180.0);
    if (FABS(gamma) < FL(1.0)) {
      tmp.azi=azi+FL(90.0);
      tmp.ele=FL(0.0); tmp.length=FL(1.0);
      angle_to_cart(tmp, &spread_base);
      gamma = ACOS(vscartdir.x * spread_base.x +
                   vscartdir.y * spread_base.y +
                   vscartdir.z * spread_base.z)/PI_F*FL(180.0);
    }
    beta = FL(180.0) - gamma;
    b=SIN(spread * PI_F / FL(180.0)) /
      SIN(beta * PI_F / FL(180.0));
    a=SIN((FL(180.0)- spread - beta) * PI_F / FL(180.0)) /
      SIN (beta * PI_F / FL(180.0));
    spreaddir->x = a * vscartdir.x + b * spread_base.x;
    spreaddir->y = a * vscartdir.y + b * spread_base.y;
    spreaddir->z = a * vscartdir.z + b * spread_base.z;

    power=SQRT(spreaddir->x*spreaddir->x +
               spreaddir->y*spreaddir->y +
               spreaddir->z*spreaddir->z);
    spreaddir->x /= power;
    spreaddir->y /= power;
    spreaddir->z /= power;
}

void new_spread_base(CART_VEC spreaddir, CART_VEC vscartdir,
                     MYFLT spread, CART_VEC *spread_base)
{
    MYFLT d;
    MYFLT power;

    d = COS(spread/FL(180.0)*PI_F);
    spread_base->x = spreaddir.x - d * vscartdir.x;
    spread_base->y = spreaddir.y - d * vscartdir.y;
    spread_base->z = spreaddir.z - d * vscartdir.z;
    power=SQRT(spread_base->x*spread_base->x +
               spread_base->y*spread_base->y +
               spread_base->z*spread_base->z);
    spread_base->x /= power;
    spread_base->y /= power;
    spread_base->z /= power;
}

#define S(x)    sizeof(x)

/* static */
static OENTRY vbap_localops[] = {
  { "vbap.a",      S(VBAP),
    TR, 3,  "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm"
    "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm",
    "akOOo",
    (SUBR) vbap_init,    (SUBR) vbap                   },
  { "vbap.A",      S(VBAPA), TR, 3,  "a[]",    "akOOo",
    (SUBR) vbap_init_a,    (SUBR) vbap_a               },
  { "vbap4",      S(VBAP),
    TR|_QQ, 3,  "aaaammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm"
    "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm",
    "akOOo", (SUBR) vbap_init, (SUBR) vbap },
  { "vbap8",      S(VBAP),
    TR|_QQ, 3,  "aaaaaaaammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm"
    "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm",
    "akOOo",
    (SUBR) vbap_init,    (SUBR) vbap                   },
  { "vbap16",      S(VBAP),
    TR|_QQ, 3,  "aaaaaaaaaaaaaaaammmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm"
    "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm",
    "akOOo", (SUBR) vbap_init,    (SUBR) vbap                   },
  { "vbapg.a",      S(VBAP1),             TR, 3,
    "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
    "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "kOOo",
    (SUBR) vbap1_init,         (SUBR) vbap1                                  },
  { "vbapg.A",      S(VBAPA1),            TR, 3,
    "k[]",  "kOOo",
    (SUBR) vbap1_init_a,         (SUBR) vbap1a                               },
  { "vbapz",      S(VBAP_ZAK),     ZW|TR, 3,  "",                 "iiakOOo",
    (SUBR) vbap_zak_init,    (SUBR) vbap_zak         },
  { "vbaplsinit",S(VBAP_LS_INIT),TR,1, "",
    "ii"
    "oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo"
    "oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo",
    (SUBR) vbap_ls_init, (SUBR) NULL, (SUBR) NULL, (SUBR) NULL         },
  { "vbaplsinit",S(VBAP_LS_INIT),TR,1, "", "iii[]",
    (SUBR) vbap_ls_inita, (SUBR) NULL, (SUBR) NULL, (SUBR) NULL         },
  { "vbapmove.a", S(VBAP_MOVING),
    TR, 3,  "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm"
    "mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm",
    "aiiim",
    (SUBR) vbap_moving_init, (SUBR) vbap_moving },
  { "vbapgmove.a",  S(VBAP1_MOVING),      TR, 3,
    "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz"
    "zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz", "iiim",
    (SUBR) vbap1_moving_init,    (SUBR) vbap1_moving },
  { "vbapmove.A", S(VBAPA_MOVING),
    TR, 3,  "a[]",  "aiiim",
    (SUBR) vbap_moving_init_a, (SUBR) vbap_moving_a },
  { "vbapgmove.A",  S(VBAPA1_MOVING),      TR, 3,
    "k[]", "iiim",
    (SUBR) vbap1_moving_init_a,    (SUBR) vbap1_moving_a },
  { "vbapzmove",  S(VBAP_ZAK_MOVING),    ZW|TR, 3,  "",  "iiaiiim",
    (SUBR) vbap_zak_moving_init,    (SUBR) vbap_zak_moving  },
  { "vbap4move", S(VBAP_MOVING),   TR|_QQ, 3,  "aaaa",
   "aiiim",
    (SUBR) vbap_moving_init, (SUBR) vbap_moving },
  { "vbap8move", S(VBAP_MOVING),
    TR|_QQ, 3,  "aaaaaaaa",
    "aiiim",
    (SUBR) vbap_moving_init, (SUBR) vbap_moving }

};

LINKAGE_BUILTIN(vbap_localops)