1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
|
/*
plugin.h
CPOF Csound Plugin Opcode Framework
C++ plugin opcode interface
(c) Victor Lazzarini, 2017
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
#ifndef _PLUGIN_H_
#define _PLUGIN_H_
#include "csdl.h"
#include "pstream.h"
#include "arrays.h"
#include <array>
#include <algorithm>
#include <complex>
#include <cstring>
#include <iostream>
namespace csnd {
/* constants */
const double twopi = TWOPI;
/** opcode threads: i-time, k-perf and/or a-perf
*/
enum thread { i = 1, k = 2, ik = 3, a = 4, ia = 5 /*, ika = 3*/ };
/** fsig formats: phase vocoder, stft polar, stft complex, or
sinusoidal tracks
*/
enum fsig_format { pvs = 0, polar, complex, tracks };
typedef CSOUND_FFT_SETUP *fftp;
/** Csound Engine object.
*/
class Csound : CSOUND {
/** Utility classes
*/
template <typename T> friend class Vector;
friend class Fsig;
friend class Table;
template <typename T> friend class AuxMem;
/**
@private
opcode function template (deinit-time)
*/
template <typename T> static int deinit(CSOUND *csound, void *p) {
return ((T *)p)->deinit();
}
public:
/** Host Data
*/
void *host_data() { return GetHostData(this); }
/** init-time error message
*/
int init_error(const std::string &s) {
return InitError(this, "%s\n", LocalizeString(s.c_str()));
}
/** perf-time error message
*/
int perf_error(const std::string &s, OPDS *inst) {
return PerfError(this, inst, "%s\n", LocalizeString(s.c_str()));
}
/** warning message
*/
void warning(const std::string &s) {
Warning(this, "%s", LocalizeString(s.c_str()));
}
/** console messages
*/
void message(const std::string &s) {
Message(this, "%s\n", LocalizeString(s.c_str()));
}
/** system sampling rate
*/
MYFLT sr() { return GetSr(this); }
/** system control rate
*/
MYFLT kr() { return GetKr(this); }
/** system max amp reference
*/
MYFLT _0dbfs() { return Get0dBFS(this); }
/** system A4 reference
*/
MYFLT _A4() { return GetA4(this); }
/** number of audio channels (out)
*/
uint32_t nchnls() { return GetNchnls(this); }
/** number of audio channels (in)
*/
uint32_t nchnls_i() { return GetNchnls_i(this); }
/** time count (samples)
*/
int64_t current_time_samples() { return GetCurrentTimeSamples(this); }
/** time count (seconds)
*/
double current_time_seconds() {
return GetCurrentTimeSamples(this) / GetSr(this);
}
/** check for audio signal variable argument
*/
bool is_asig(void *arg) {
return !std::strcmp(GetTypeForArg(arg)->varTypeName, "a");
}
/** midi channel number for this instrument
*/
int midi_channel(OPDS *p) { return GetMidiChannelNumber(p); }
/** midi note number for this instrument
*/
int midi_note_num(OPDS *p) { return GetMidiNoteNumber(p); }
/** midi note velocity for this instrument
*/
int midi_note_vel(OPDS *p) { return GetMidiVelocity(p); }
/** midi aftertouch for this channel
*/
MYFLT midi_chn_aftertouch(OPDS *p) {
return GetMidiChannel(p)->aftouch; }
/** midi poly aftertouch for this channel
*/
MYFLT midi_chn_polytouch(OPDS *p, uint32_t note) {
return GetMidiChannel(p)->polyaft[note];
}
/** midi ctl change for this channel
*/
MYFLT midi_chn_ctl(OPDS *p, uint32_t ctl) {
return GetMidiChannel(p)->ctl_val[ctl];
}
/** midi pitchbend for this channel
*/
MYFLT midi_chn_pitchbend(OPDS *p) {
return GetMidiChannel(p)->pchbend;
}
/** list of active instrument instances for this channel \n
returns an INSDS array with 128 items, one per
MIDI note number. Inactive instances are marked NULL.
*/
const INSDS *midi_chn_list(OPDS *p) {
return (const INSDS *) GetMidiChannel(p)->kinsptr;
}
/** deinit registration for a given plugin class
*/
template <typename T> void plugin_deinit(T *p) {
RegisterDeinitCallback(this, (void *)p, deinit<T>);
}
/** Csound memory allocation - malloc style
*/
void *malloc(size_t size) { return Malloc(this, size); }
/** Csound memory allocation - calloc style
*/
void *calloc(size_t size) { return Calloc(this, size); }
/** Csound memory re-allocation
*/
void *realloc(void *p, size_t size) { return ReAlloc(this, p, size); }
/** Csound string duplication
*/
char *strdup(char *s) { return Strdup(this, s); }
/** Csound memory de-allocation
*/
void free(void *p) { Free(this, p); }
/** FFT setup: real-to-complex and complex-to-real \n
direction: FFT_FWD or FFT_INV \n
returns a handle to the FFT setup.
*/
fftp fft_setup(uint32_t size, uint32_t direction) {
return (fftp)RealFFT2Setup(this, size, direction);
}
/** FFT operation, in-place, but also
returning a pointer to std::complex<MYFLT>
to the transformed data memory.
*/
std::complex<MYFLT> *rfft(fftp setup, MYFLT *data) {
if (!setup->p2) {
if (setup->d == FFT_FWD)
RealFFTnp2(this, data, setup->N);
else
InverseRealFFTnp2(this, data, setup->N);
} else
RealFFT2(this, setup, data);
return reinterpret_cast<std::complex<MYFLT> *>(data);
}
/** FFT operation for complex data, in-place, but also
returning a pointer to std::complex<MYFLT>
to the transformed data memory.
*/
std::complex<MYFLT> *fft(fftp setup, std::complex<MYFLT> *data) {
MYFLT *fdata = reinterpret_cast<MYFLT *>(data);
if (setup->d == FFT_FWD)
ComplexFFT(this, fdata, setup->N);
else
ComplexFFT(this, fdata, setup->N);
return reinterpret_cast<std::complex<MYFLT> *>(fdata);
}
/** Creates a global variable in the current Csound object
*/
int create_global_variable(const char *name, size_t nbytes) {
return CreateGlobalVariable(this, name, nbytes);
}
/** Retrieves a ptr for an existing named global variable
*/
void *query_global_variable(const char* name) {
return QueryGlobalVariable(this, name);
}
/** Destroy an existing named global variable
*/
int destroy_global_variable(const char* name) {
return DestroyGlobalVariable(this, name);
}
/** Access to the base CSOUND object
*/
CSOUND *get_csound() {
return this;
}
/** Sleep
*/
void sleep(int ms) { Sleep(ms); }
};
/**
Thread pure virtual base class
*/
class Thread {
void *thread;
static uintptr_t thrdRun(void *t) { return ((Thread *)t)->run(); }
virtual uintptr_t run() = 0;
protected:
Csound *csound;
public:
Thread(Csound *cs) : csound(cs) {
CSOUND *p = (CSOUND *)csound;
thread = p->CreateThread(thrdRun, (void *)this);
}
uintptr_t join() {
CSOUND *p = (CSOUND *)csound;
return p->JoinThread(thread);
}
void *get_thread() { return thread; }
};
/** Class AudioSig wraps an audio signal
*/
class AudioSig {
uint32_t early;
uint32_t offset;
uint32_t nsmps;
MYFLT *sig;
public:
/** Constructor takes the plugin object and the
audio argument pointer, and a reset flag if
we need to clear an output buffer
*/
AudioSig(OPDS *p, MYFLT *s, bool res = false)
: early(p->insdshead->ksmps_no_end), offset(p->insdshead->ksmps_offset),
nsmps(p->insdshead->ksmps - p->insdshead->ksmps_no_end), sig(s) {
if (res) {
std::fill(sig, sig + p->insdshead->ksmps, 0);
}
};
/** iterator type
*/
typedef MYFLT *iterator;
/** const_iterator type
*/
typedef const MYFLT *const_iterator;
/** vector beginning
*/
iterator begin() { return sig + offset; }
/** vector end
*/
iterator end() { return sig + nsmps; }
/** vector beginning
*/
const_iterator begin() const { return sig + offset; }
/** vector end
*/
const_iterator end() const { return sig + nsmps; }
/** vector beginning
*/
const_iterator cbegin() const { return sig + offset; }
/** vector end
*/
const_iterator cend() const { return sig + nsmps; }
/** array subscript access (write)
*/
MYFLT &operator[](int n) { return sig[n]; }
/** array subscript access (read)
*/
const MYFLT &operator[](int n) const { return sig[n]; }
/** get early exit sample position
*/
uint32_t GetEarly() { return early; }
/** get early exit sample offset
*/
uint32_t GetOffset() { return offset; }
/** get number of samples to process
*/
uint32_t GetNsmps() { return nsmps; }
};
/** One-dimensional array container
template class
*/
template <typename T> class Vector : ARRAYDAT {
public:
/** Initialise the container
*/
void init(Csound *csound, int size) {
tabinit(csound, this, size);
}
/** iterator type
*/
typedef T *iterator;
/** const_iterator type
*/
typedef const T *const_iterator;
/** vector beginning
*/
iterator begin() { return (T *)data; }
/** vector end
*/
iterator end() { return (T *)((char *)data + sizes[0] * arrayMemberSize); }
/** vector beginning
*/
const_iterator cbegin() const { return (const T *)data; }
/** vector end
*/
const_iterator cend() const {
return (const T *)((char *)data + sizes[0] * arrayMemberSize);
}
/** vector beginning
*/
const_iterator begin() const { return (const T *)data; }
/** vector end
*/
const_iterator end() const {
return (const T *)((char *)data + sizes[0] * arrayMemberSize);
}
/** array subscript access (write)
*/
T &operator[](int n) { return ((T *)data)[n]; }
/** array subscript access (read)
*/
const T &operator[](int n) const { return ((T *)data)[n]; }
/** array subscript access (read)
*/
uint32_t len() { return sizes[0]; }
/** element offset
*/
uint32_t elem_offset() { return arrayMemberSize / sizeof(T); }
/** array data
*/
T *data_array() { return (T *)data; }
};
typedef Vector<MYFLT> myfltvec;
typedef std::complex<float> pvscmplx;
typedef std::complex<MYFLT> sldcmplx;
/** Pvbin holds one Phase Vocoder bin
*/
template <typename T> class Pvbin {
T am;
T fr;
public:
/** constructor
*/
Pvbin() : am((T)0), fr((T)0){};
/** access amplitude
*/
T amp() { return am; }
/** access frequency
*/
T freq() { return fr; }
/** set amplitude
*/
T amp(T a) { return (am = a); }
/** set frequency
*/
T freq(T f) { return (fr = f); }
/** multiplication (unary)
*/
const Pvbin &operator*=(const Pvbin &bin) {
am *= bin.am;
fr = bin.fr;
return *this;
}
/** multiplication (binary)
*/
Pvbin operator*(const Pvbin &a) {
Pvbin res = *this;
return (res *= a);
}
/** multiplication by MYFLT (unary)
*/
const Pvbin &operator*=(MYFLT f) {
am *= f;
return *this;
}
/** multiplication by MYFLT (binary)
*/
Pvbin operator*(MYFLT f) {
Pvbin res = *this;
return (res *= f);
}
/** cast to std::complex<T>&
*/
operator pvscmplx &() { return (pvscmplx &)reinterpret_cast<T(&)[2]>(*this); }
/** cast to std::complex<T>*
*/
operator pvscmplx *() { return (pvscmplx *)reinterpret_cast<T *>(this); }
};
/** Phase Vocoder bin */
typedef Pvbin<float> pv_bin;
/** Sliding Phase Vocoder bin */
typedef Pvbin<MYFLT> spv_bin;
template <typename T> class Pvframe;
/** Phase Vocoder frame */
typedef Pvframe<pv_bin> pv_frame;
/** Sliding Phase Vocoder frame */
typedef Pvframe<spv_bin> spv_frame;
/** fsig base class, holds PVSDAT data
*/
class Fsig : protected PVSDAT {
public:
/** initialise the object, allocating memory
if necessary.
*/
void init(Csound *csound, int32_t n, int32_t h, int32_t w, int32_t t,
int32_t f, int32_t nb = 0, int32_t sl = 0, uint32_t nsmps = 1) {
N = n;
overlap = h;
winsize = w;
wintype = t;
format = f;
NB = nb;
sliding = sl;
if (!sliding) {
size_t bytes = (n + 2) * sizeof(float);
if (frame.auxp == nullptr || frame.size < bytes) {
csound->AuxAlloc(csound, bytes, &frame);
std::fill((float *)frame.auxp, (float *)frame.auxp + n + 2, 0);
}
} else {
size_t bytes = (n + 2) * sizeof(MYFLT) * nsmps;
if (frame.auxp == NULL || frame.size < bytes)
csound->AuxAlloc(csound, bytes, &frame);
}
framecount = 1;
}
void init(Csound *csound, const Fsig &f, uint32_t nsmps = 1) {
init(csound, f.N, f.overlap, f.winsize, f.wintype, f.format, f.NB,
f.sliding, nsmps);
}
/** get the DFT size
*/
uint32_t dft_size() { return N; }
/** get the analysis hop size
*/
uint32_t hop_size() { return overlap; }
/** get the analysis window size
*/
uint32_t win_size() { return winsize; }
/** get the window type
*/
int32_t win_type() { return wintype; }
/** get the number of bins
*/
uint32_t nbins() { return N / 2 + 1; }
/** get the framecount
*/
uint32_t count() const { return framecount; }
/** set framecount
*/
uint32_t count(uint32_t cnt) { return (framecount = cnt); }
/** check for sliding mode
*/
bool isSliding() { return (bool)sliding; }
/** get fsig data format
*/
int fsig_format() { return format; }
/** get data frame as floats
*/
float *data() { return (float *) frame.auxp; }
/** convert to pv_frame ref
*/
operator pv_frame &() { return reinterpret_cast<pv_frame &>(*this); }
#ifdef USE_DOUBLE
/** convert to spv_frame ref
*/
operator spv_frame &() { return reinterpret_cast<spv_frame &>(*this); }
#endif
};
/** Container class for a Phase Vocoder
analysis frame
*/
template <typename T> class Pvframe : public Fsig {
public:
/** iterator type
*/
typedef T *iterator;
/** const_iterator type
*/
typedef const T *const_iterator;
/** returns an iterator to the
beginning of the frame
*/
iterator begin() { return (T *)frame.auxp; }
/** returns an iterator to the
end of the frame
*/
iterator end() { return (T *)frame.auxp + N / 2 + 1; }
/** returns a const iterator to the
beginning of the frame
*/
const_iterator begin() const { return (const T *)frame.auxp; }
/** returns a const iterator to the
end of the frame
*/
const_iterator end() const { return (const T *)(frame.auxp + N / 2 + 1); }
/** returns a const iterator to the
beginning of the frame
*/
const_iterator cbegin() const { return (const T *)frame.auxp; }
/** returns a const iterator to the
end of the frame
*/
const_iterator cend() const { return (const T *)(frame.auxp + N / 2 + 1); }
/** array subscript access operator (write)
*/
T &operator[](int n) { return ((T *)frame.auxp)[n]; }
/** array subscript access operator (read)
*/
const T &operator[](int n) const { return ((T *)frame.auxp)[n]; }
/** frame data pointer
*/
T *data() const { return (T *)frame.auxp; }
/** return the container length
*/
uint32_t len() { return nbins(); }
};
/** function table container class
*/
class Table : FUNC {
public:
/** Initialise this object from an opcode
argument arg */
int init(Csound *csound, MYFLT *arg) {
Table *f = (Table *)csound->FTnp2Finde(csound, arg);
if (f != nullptr) {
std::copy(f, f + 1, this);
return OK;
}
return NOTOK;
}
/** iterator type
*/
typedef MYFLT *iterator;
/** const_iterator type
*/
typedef const MYFLT *const_iterator;
/** returns an iterator to the
beginning of the table
*/
iterator begin() { return ftable; }
/** returns an iterator to the
end of the table
*/
iterator end() { return ftable + flen; }
/** returns a const iterator to the
beginning of the table
*/
const_iterator begin() const { return ftable; }
/** returns a const iterator to the
end of the table
*/
const_iterator end() const { return ftable + flen; }
/** returns a const iterator to the
beginning of the table
*/
const_iterator cbegin() const { return ftable; }
/** returns a const iterator to the
end of the table
*/
const_iterator cend() const { return ftable + flen; }
/** array subscript access operator (write)
*/
MYFLT &operator[](int n) { return ftable[n]; }
/** array subscript access operator (read)
*/
const MYFLT &operator[](int n) const { return ftable[n]; }
/** function table data pointer
*/
MYFLT *data() const { return ftable; }
/** function table length
*/
uint32_t len() { return flen; }
};
/** vector container template using Csound AuxAlloc
mechanism for dynamic memory allocation
*/
template <typename T> class AuxMem : AUXCH {
public:
/** allocate memory for the container
*/
void allocate(Csound *csound, int n) {
size_t bytes = n * sizeof(T);
if (auxp == nullptr || size != bytes) {
csound->AuxAlloc(csound, bytes, (AUXCH *)this);
std::fill((char *)auxp, (char *)endp, 0);
}
}
/** iterator type
*/
typedef T *iterator;
/** const_iterator type
*/
typedef const T *const_iterator;
/** vector beginning
*/
iterator begin() { return (T *)auxp; }
/** vector end
*/
iterator end() { return (T *)endp; }
/** vector beginning (const iterator)
*/
const_iterator begin() const { return (const T *)auxp; }
/** vector end (const iterator)
*/
const_iterator end() const { return (const T *)endp; }
/** vector beginning (const iterator)
*/
const_iterator cbegin() const { return (const T *)auxp; }
/** vector end (const iterator)
*/
const_iterator cend() const { return (const T *)endp; }
/** array subscript access (write)
*/
T &operator[](int n) { return ((T *)auxp)[n]; }
/** array subscript access (read)
*/
const T &operator[](int n) const { return ((T *)auxp)[n]; }
/** returns a pointer to the vector data
*/
T *data() { return (T *)auxp; }
/** returns the length of the vector
*/
uint32_t len() { return size / sizeof(T); }
};
/** Parameters template class
*/
template <std::size_t N> class Param {
std::array<MYFLT *, N> ptrs;
public:
/** parameter access via array subscript (write)
*/
MYFLT &operator[](int n) { return *ptrs[n]; }
/** parameter access via array subscript (read)
*/
const MYFLT &operator[](int n) const { return *ptrs[n]; }
/** iterator type
*/
typedef MYFLT **iterator;
/** const_iterator type
*/
typedef const MYFLT **const_iterator;
/** vector beginning
*/
iterator begin() { return &ptrs[0]; }
/** vector end
*/
iterator end() { return &ptrs[N]; }
/** vector beginning
*/
const_iterator begin() const { return (const MYFLT **)&ptrs[0]; }
/** vector end
*/
const_iterator end() const { return (const MYFLT **)&ptrs[N]; }
/** vector beginning
*/
const_iterator cbegin() const { return (const MYFLT **)&ptrs[0]; }
/** vector end
*/
const_iterator cend() const { return (const MYFLT **)&ptrs[N]; }
/** parameter data (MYFLT pointer) at index n
*/
MYFLT *operator()(int n) { return ptrs[n]; }
/** @private:
same as operator()
*/
MYFLT *data(int n) { return ptrs[n]; }
/** parameter string data (STRINGDAT ref) at index n
*/
STRINGDAT &str_data(int n) { return (STRINGDAT &)*ptrs[n]; }
/** parameter fsig data (Fsig ref) at index n
*/
Fsig &fsig_data(int n) { return (Fsig &)*ptrs[n]; }
/** 1-D array data as Vector template ref
*/
template <typename T> Vector<T> &vector_data(int n) {
return (Vector<T> &)*ptrs[n];
}
/** returns 1-D numeric array data
*/
myfltvec &myfltvec_data(int n) { return (myfltvec &)*ptrs[n]; }
};
/** InPlug template base class:
for 0 outputs and N inputs
also for multiple outputs and/or inputs
*/
template <std::size_t N> struct InPlug : OPDS {
/** arguments */
Param<N> args;
/** Csound engine */
Csound *csound;
/** sample-accurate offset */
uint32_t offset;
/** vector samples to process */
uint32_t nsmps;
/** i-time function placeholder
*/
int init() { return OK; }
/** k-rate function placeholder
*/
int kperf() { return OK; }
/** a-rate function placeholder
*/
int aperf() { return OK; }
/** @private
sample-accurate offset for
a-rate opcodes; updates offset
and nsmps. Called implicitly by
the aperf() method.
*/
void sa_offset() {
uint32_t early = insdshead->ksmps_no_end;
nsmps = insdshead->ksmps - early;
offset = insdshead->ksmps_offset;
}
/** @private
set nsmps and offset value for kperf()
*/
void nsmps_set() {
nsmps = insdshead->ksmps - insdshead->ksmps_no_end;
offset = insdshead->ksmps_offset;
}
/** returns the number of output arguments
used in the case of variable output count
*/
uint32_t out_count() { return (uint32_t)optext->t.outArgCount; }
/** returns the number of input arguments
used in the case of variable input count
*/
uint32_t in_count() { return (uint32_t)optext->t.inArgCount; }
/** local control rate
*/
MYFLT kr() { return insdshead->ekr; }
/** local ksmps
*/
MYFLT ksmps() { return insdshead->ksmps; }
/** sampling rate
*/
MYFLT sr() { return csound->sr(); }
/** midi channel number for this instrument
*/
int midi_channel() { return ((CSOUND *)csound)->GetMidiChannelNumber(this); }
/** midi note number for this instrument
*/
int midi_note_num() { return ((CSOUND *)csound)->GetMidiNoteNumber(this); }
/** midi note velocity for this instrument
*/
int midi_note_vel() { return ((CSOUND *)csound)->GetMidiVelocity(this); }
/** midi aftertouch for this channel
*/
MYFLT midi_chn_aftertouch() {
return ((CSOUND *)csound)->GetMidiChannel(this)->aftouch; }
/** midi poly aftertouch for this channel
*/
MYFLT midi_chn_polytouch(uint32_t note) {
return ((CSOUND *)csound)->GetMidiChannel(this)->polyaft[note];
}
/** midi ctl change for this channel
*/
MYFLT midi_chn_ctl(uint32_t ctl) {
return ((CSOUND *)csound)->GetMidiChannel(this)->ctl_val[ctl];
}
/** midi pitchbend for this channel
*/
MYFLT midi_chn_pitchbend() {
return ((CSOUND *)csound)->GetMidiChannel(this)->pchbend; }
/** list of active instrument instances for this channel \n
returns an INSDS array with 128 items, one per
MIDI note number. Inactive instances are marked NULL.
*/
const INSDS *midi_chn_list() {
return (const INSDS *) ((CSOUND *)csound)->GetMidiChannel(this)->kinsptr;
}
/** check if this opcode runs at init time
*/
bool is_init() {
return this->iopadr ? true : false;
}
/** check if this opcode runs at perf time
*/
bool is_perf() {
return this->opaddr ? true : false;
}
};
/** Plugin template base class:
for N outputs and M inputs, N > 0
*/
template <std::size_t N, std::size_t M> struct Plugin : OPDS {
/** output arguments */
Param<N> outargs;
/** input arguments */
Param<M> inargs;
/** Csound engine */
Csound *csound;
/** sample-accurate offset */
uint32_t offset;
/** vector samples to process */
uint32_t nsmps;
/** i-time function placeholder
*/
int init() { return OK; }
/** k-rate function placeholder
*/
int kperf() { return OK; }
/** a-rate function placeholder
*/
int aperf() { return OK; }
/** @private
sample-accurate offset for
a-rate opcodes; updates offset
and nsmps. Called implicitly by
the aperf() method.
*/
void sa_offset() {
uint32_t early = insdshead->ksmps_no_end;
nsmps = insdshead->ksmps - early;
offset = insdshead->ksmps_offset;
if (UNLIKELY(offset || early))
for (auto &arg : outargs) {
if (csound->is_asig(arg)) {
std::fill(arg, arg + offset, 0);
std::fill(arg + nsmps, arg + nsmps + early, 0);
}
}
}
/** @private
set nsmps and offset value for kperf()
*/
void nsmps_set() {
nsmps = insdshead->ksmps - insdshead->ksmps_no_end;
offset = insdshead->ksmps_offset;
}
/** returns the number of output arguments
used in the case of variable output count
*/
uint32_t out_count() { return (uint32_t)optext->t.outArgCount; }
/** returns the number of input arguments
used in the case of variable input count
*/
uint32_t in_count() { return (uint32_t)optext->t.inArgCount; }
/** local control rate
*/
MYFLT kr() { return insdshead->ekr; }
/** local ksmps
*/
MYFLT ksmps() { return insdshead->ksmps; }
/** sampling rate
*/
MYFLT sr() { return csound->sr(); }
/** midi channel number for this instrument
*/
int midi_channel() { return ((CSOUND *)csound)->GetMidiChannelNumber(this); }
/** midi note number for this instrument
*/
int midi_note_num() { return ((CSOUND *)csound)->GetMidiNoteNumber(this); }
/** midi note velocity for this instrument
*/
int midi_note_vel() { return ((CSOUND *)csound)->GetMidiVelocity(this); }
/** midi aftertouch for this channel
*/
MYFLT midi_chn_aftertouch() {
return ((CSOUND *)csound)->GetMidiChannel(this)->aftouch; }
/** midi poly aftertouch for this channel
*/
MYFLT midi_chn_polytouch(uint32_t note) {
return ((CSOUND *)csound)->GetMidiChannel(this)->polyaft[note];
}
/** midi ctl change for this channel
*/
MYFLT midi_chn_ctl(uint32_t ctl) {
return ((CSOUND *)csound)->GetMidiChannel(this)->ctl_val[ctl];
}
/** midi pitchbend for this channel
*/
MYFLT midi_chn_pitchbend() {
return ((CSOUND *)csound)->GetMidiChannel(this)->pchbend; }
/** list of active instrument instances for this channel \n
returns an INSDS array with 128 items, one per
MIDI note number. Inactive instances are marked NULL.
*/
const INSDS *midi_chn_list() {
return (const INSDS *) ((CSOUND *)csound)->GetMidiChannel(this)->kinsptr;
}
/** check if this opcode runs at init time
*/
bool is_init() {
return this->iopadr ? true : false;
}
/** check if this opcode runs at perf time
*/
bool is_perf() {
return this->opadr ? true : false;
}
};
/** Fsig plugin template base class:
for N outputs and M inputs
*/
template <std::size_t N, std::size_t M> struct FPlugin : Plugin<N, M> {
/** current frame time index */
uint32_t framecount;
};
/**
@private
opcode thread function template (i-time)
*/
template <typename T> int init(CSOUND *csound, T *p) {
p->csound = (Csound *)csound;
return p->init();
}
/**
@private
opcode thread function template (k-rate)
*/
template <typename T> int kperf(CSOUND *csound, T *p) {
p->csound = (Csound *)csound;
p->nsmps_set();
return p->kperf();
}
/**
@private
opcode thread function template (a-rate)
*/
template <typename T> int aperf(CSOUND *csound, T *p) {
p->csound = (Csound *)csound;
p->sa_offset();
return p->aperf();
}
/** plugin registration function template
*/
template <typename T>
int plugin(Csound *csound, const char *name, const char *oargs,
const char *iargs, uint32_t thr, uint32_t flags = 0) {
CSOUND *cs = (CSOUND *)csound;
if(thr == thread::ia || thr == thread::a) {
thr = thr == thread::ia ? 3 : 2;
return cs->AppendOpcode(cs, (char *)name, sizeof(T), flags, thr,
(char *)oargs, (char *)iargs, (SUBR)init<T>,
(SUBR)aperf<T>, NULL);
}
else
return cs->AppendOpcode(cs, (char *)name, sizeof(T), flags, thr,
(char *)oargs, (char *)iargs, (SUBR)init<T>,
(SUBR)kperf<T>, NULL);
}
/** plugin registration function template
for classes with self-defined opcode argument types
*/
template <typename T>
int plugin(Csound *csound, const char *name, uint32_t thr,
uint32_t flags = 0) {
CSOUND *cs = (CSOUND *)csound;
if(thr == thread::ia || thr == thread::a) {
thr = thr == thread::ia ? 3 : 2;
return cs->AppendOpcode(cs, (char *)name, sizeof(T), flags, thr,
(char *)T::otypes, (char *)T::itypes, (SUBR)init<T>,
(SUBR)aperf<T>, NULL);
}
else
return cs->AppendOpcode(cs, (char *)name, sizeof(T), flags, thr,
(char *)T::otypes, (char *)T::itypes, (SUBR)init<T>,
(SUBR)kperf<T>, NULL);
}
/** utility constructor function template for member classes: \n
takes the class and constructor types as arguments. \n
Function takes the allocated memory pointer and constructor
arguments.\n
*/
template <typename T, typename... Types> T *constr(T *p, Types... args) {
return new (p) T(args...);
}
template <typename T> void destr(T *p) { p->T::~T(); }
}
#endif
|