1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
|
/*
dnoise.c:
Copyright (C) 2000 Mark Dolson, John ffitch
This file is part of Csound.
The Csound Library is free software; you can redistribute it
and/or modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
Csound is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Csound; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
02110-1301 USA
*/
/*
* PROGRAM: dnoise - de-noise a recording
*
* AUTHOR: Mark Dolson
*
* DATE: August 26, 1989
*
* COMMENTS: dnoise takes floats from stdin and outputs them
* on stdout as a noise-reduced version of the input signal.
* dnoise uses the phase vocoder algorithm in which
* successsive windows are Fast Fourier Transformed,
* noise-gated, and then Inverse Fast Fourier Transformed
* and overlap-added back together.
*
* REVISIONS: John ffitch, September 1999, December 2000
* Writes any format using usual Csound functions.
*
*/
/*
This is a noise reduction scheme using frequency-
domain noise-gating. This should work best in
the case of high signal-to-noise with hiss-type
noise. The algorithm is that suggested by
Moorer & Berger in "Linear-Phase Bandsplitting:
Theory and Applications" presented at the 76th
Convention 1984 October 8-11 New York of the Audio
Engineering Society (preprint #2132) except that
it uses the Weighted Overlap-Add formulation for
short-time Fourier analysis-synthesis in place of
the recursive formulation suggested by Moorer &
Berger. The gain in each frequency bin is computed
independently according to
gain = g0 + (1-g0) * [avg / (avg + th*th*nref)] ^ sh
where avg and nref are the mean squared signal and
noise respectively for the bin in question. (This
is slightly different than in Moorer & Berger.) The
critical parameters th and g0 are specified in dB
and internally converted to decimal values. The nref
values are computed at the start of the program on the
basis of a noise_soundfile (specified in the command
line) which contains noise without signal. The avg
values are computed over a rectangular window of m
FFT frames looking both ahead and behind the current
time. This corresponds to a temporal extent of m*D/R
(which is typically (m*N/8)/R). The default settings
of N, M, and D should be appropriate for most uses. A
higher sample rate than 16KHz might indicate a higher N.
*/
#include "std_util.h"
#include "soundio.h"
#include <math.h>
#include <ctype.h>
#include <inttypes.h>
#define ERR(x) \
{ \
csound->Message(csound, "%s", x); \
return -1; \
}
#define FIND(x) \
{ \
if (*s == '\0') { \
if (UNLIKELY(!(--argc) || (((s = *argv++) != NULL) && *s == '-'))) { \
csound->Message(csound, "%s\n", Str(x)); \
return dnoise_usage(csound, -1); \
} \
} \
}
static int32_t dnoise_usage(CSOUND *, int32_t);
static void hamming(MYFLT *, int32_t, int32_t);
static int32_t writebuffer(CSOUND *, SNDFILE *, MYFLT *,
int32_t, int32_t *, OPARMS *);
#if 0
static void fast(CSOUND *csound, MYFLT *b, int32_t N)
{
/* The DC term is returned in location b[0] with b[1] set to 0.
Thereafter, the i'th harmonic is returned as a complex
number stored as b[2*i] + j b[2*i+1]. The N/2 harmonic
is returned in b[N] with b[N+1] set to 0. Hence, b must
be dimensioned to size N+2. The subroutine is called as
fast(b,N) where N=2**M and b is the real array described
above.
*/
csound->RealFFT(csound, b, N);
b[N] = b[1];
b[1] = b[N + 1] = FL(0.0);
}
static void fsst(CSOUND *csound, MYFLT *b, int32_t N)
{
/* This subroutine synthesizes the real vector b[k] for k=0, 1,
..., N-1 from the fourier coefficients stored in the b
array of size N+2. The DC term is in location b[0] with
b[1] equal to 0. The i'th harmonic is a complex number
stored as b[2*i] + j b[2*i+1]. The N/2 harmonic is in
b[N] with b[N+1] equal to 0. The subroutine is called as
fsst(b,N) where N=2**M and b is the real array described
above.
*/
MYFLT scaleVal;
int32_t i;
scaleVal = csound->GetInverseRealFFTScale(csound, N);
b[1] = b[N];
b[N] = b[N + 1] = FL(0.0);
for (i = 0; i < N; i++)
b[i] *= scaleVal;
csound->InverseRealFFT(csound, b, N);
}
#endif
static inline void fast2(CSOUND *csound, void *setup, MYFLT *b)
{
csound->RealFFT2(csound, setup, b);
}
static inline void fsst2(CSOUND *csound, void *setup, MYFLT *b)
{
csound->RealFFT2(csound, setup, b);
}
static int32_t dnoise(CSOUND *csound, int32_t argc, char **argv)
{
OPARMS O;
MYFLT beg = -FL(1.0), end = -FL(1.0);
int64_t Beg = 0, End = 99999999;
MYFLT
*ibuf1, /* pointer to start of input buffer */
*ibuf2, /* pointer to start of input buffer */
*obuf1, /* pointer to start of output buffer */
*obuf2, /* pointer to start of output buffer */
*fbuf, /* pointer to start of FFT buffer */
*aWin, /* pointer to center of analysis window */
*sWin, /* pointer to center of synthesis window */
*i0, /* pointer to real channels */
*i1, /* pointer to imaginary channels */
*j0, /* pointer to real channels */
*j1, /* pointer to imaginary channels */
*f, /* pointer to FFT buffer */
*f0, /* pointer to real channels */
*f1, /* pointer to imaginary channels */
*w, /* pointer to window */
*mbuf, /* m most recent frames of FFT */
*nbuf, /* m most recent frames of FFT */
*nref, /* noise reference buffer */
*rsum, /* running sum of magnitude-squared spectrum */
*ssum, /* running sum of magnitude-squared spectrum */
*ibp, /* pointer to next input to be read */
*ib0, /* pointer to output buffer */
*ib1, /* pointer to output buffer */
*ib2, /* pointer to output buffer */
*obp, /* pointer to next output to be read */
*ob0, /* pointer to output buffer */
*ob1, /* pointer to output buffer */
*ob2; /* pointer to output buffer */
int32_t
N = 0, /* number of phase vocoder channels (bands) */
Np2, /* N+2 */
M = 0, /* length of aWin impulse response */
L = 0, /* length of sWin impulse response */
D = 0, /* decimation factor (default will be M/8) */
I = 0, /* interpolation factor (default will be I=D)*/
W = -1, /* filter overlap factor (determines M, L) */
ibuflen, /* size of ibuf */
obuflen, /* size of obuf */
aLen, /* half-length of analysis window */
sLen; /* half-length of synthesis window */
int64_t
oCnt = 0L, /* number of samples written to output */
nI, /* current input (analysis) sample */
nO, /* current output (synthesis) sample */
nImodR, /* current input sample mod R */
nMaxOut, /* last output (synthesis) sample */
nMin, /* first input (analysis) sample */
nMax, /* last input sample (unless EOF) */
lnread, /* total input samples read */
lj, /* to satisfy lame Microsoft compiler */
lk; /* to satisfy lame Microsoft compiler */
SNDFILE *fp = NULL; /* noise reference file */
MYFLT
Ninv, /* 1. / N */
sum, /* scale factor for renormalizing windows */
//rIn, /* decimated sampling rate */
//rOut, /* pre-interpolated sampling rate */
invR, /* 1. / srate */
time, /* nI / srate */
gain, /* gain of noise gate */
g0 = -FL(40.0),/* minimum gain for noise gate */
g0m, /* 1. - g0 */
th = FL(30.0), /* threshold above noise reference (dB) */
avg, /* average square energy */
fac, /* factor in gain computation */
minv, /* 1 / m */
R = -FL(1.0); /* input sampling rate */
int32_t i,j,k, /* index variables */
ibs, /* current starting location in input buffer */
ibc, /* current location in input buffer */
obs, /* current starting location in output buffer */
obc, /* current location in output buffer */
m = 5, /* number of frames to save in mbuf */
mi = 0, /* frame offset index in mbuf */
mj, /* delayed offset index in mbuf */
md, /* number of frames of delay in mbuf (m/2) */
mp, /* mi * Np2 */
sh = 1, /* sharpness control for noise gate gain */
nread, /* number of bytes read */
N2, /* N/2 */
Meven = 0, /* flag for even M */
Leven = 0, /* flag for even L */
Verbose = 0,/* flag for verbose output to stderr */
Chans = -1, /* number of audio input channels (stereo = 2) */
chan, /* channel counter */
flag = 1, /* end-of-input flag */
first = 0; /* first-time-thru flag */
SOUNDIN *p, *pn;
char *infile = NULL, *nfile = NULL;
SNDFILE *inf = NULL, *outfd = NULL;
char c, *s;
int32_t channel = ALLCHNLS;
MYFLT beg_time = FL(0.0), input_dur = FL(0.0), sr = FL(0.0);
MYFLT beg_ntime = FL(0.0), input_ndur = FL(0.0), srn = FL(0.0);
const char *envoutyp = NULL;
uint32_t outbufsiz = 0U;
int32_t nrecs = 0;
csound->GetOParms(csound, &O);
/* audio is now normalised after call to getsndin */
/* csound->e0dbfs = csound->dbfs_to_float = FL(1.0); */
if ((envoutyp = csound->GetEnv(csound, "SFOUTYP")) != NULL) {
if (strcmp(envoutyp, "AIFF") == 0)
O.filetyp = TYP_AIFF;
else if (strcmp(envoutyp, "WAV") == 0)
O.filetyp = TYP_WAV;
else if (strcmp(envoutyp, "IRCAM") == 0)
O.filetyp = TYP_IRCAM;
else {
csound->Message(csound, Str("%s not a recognised SFOUTYP env setting"),
envoutyp);
return -1;
}
}
{
++argv;
while (--argc>0) {
s = *argv++;
if (*s++ == '-') { /* read all flags: */
while ((c = *s++) != '\0') {
switch (c) {
case 'o':
FIND("no outfilename");
O.outfilename = s; /* soundout name */
for ( ; *s != '\0'; s++) ;
if (UNLIKELY(strcmp(O.outfilename, "stdin") == 0)) {
csound->Message(csound, "%s", Str("-o cannot be stdin\n"));
return -1;
}
break;
case 'i':
FIND("no noisefilename");
nfile = s;
for ( ; *s != '\0'; s++) ;
break;
case 'A':
if (UNLIKELY(O.filetyp == TYP_WAV))
csound->Warning(csound,
"%s", Str("-A overriding local default WAV out"));
O.filetyp = TYP_AIFF; /* AIFF output request*/
break;
case 'J':
if (UNLIKELY(O.filetyp == TYP_AIFF || O.filetyp == TYP_WAV))
csound->Warning(csound, "%s", Str("-J overriding local default "
"AIFF/WAV out"));
O.filetyp = TYP_IRCAM; /* IRCAM output request */
break;
case 'W':
if (UNLIKELY(O.filetyp == TYP_AIFF))
csound->Warning(csound,
"%s", Str("-W overriding local default AIFF out"));
O.filetyp = TYP_WAV; /* WAV output request */
break;
case 'h':
O.filetyp = TYP_RAW;
O.sfheader = 0; /* skip sfheader */
break;
case 'c':
O.outformat = AE_CHAR; /* 8-bit char soundfile */
break;
case '8':
O.outformat = AE_UNCH; /* 8-bit unsigned char file */
break;
case 'a':
O.outformat = AE_ALAW; /* a-law soundfile */
break;
case 'u':
O.outformat = AE_ULAW; /* mu-law soundfile */
break;
case 's':
O.outformat = AE_SHORT; /* short_int soundfile */
break;
case 'l':
O.outformat = AE_LONG; /* long_int soundfile */
break;
case 'f':
O.outformat = AE_FLOAT; /* float soundfile */
break;
case 'R':
O.rewrt_hdr = 1;
break;
case 'H':
if (isdigit(*s)) {
int32_t n;
sscanf(s, "%d%n", &O.heartbeat, &n);
s += n;
}
else O.heartbeat = 1;
break;
case 't':
FIND(Str("no t argument"));
#if defined(USE_DOUBLE)
csound->sscanf(s,"%lf",&th);
#else
csound->sscanf(s,"%f",&th);
#endif
while (*++s);
break;
case 'S':
FIND("no s arg");
sscanf(s,"%d", &sh);
while (*++s);
break;
case 'm':
FIND("no m arg");
#if defined(USE_DOUBLE)
csound->sscanf(s,"%lf",&g0);
#else
csound->sscanf(s,"%f",&g0);
#endif
while (*++s);
break;
case 'n':
FIND(Str("no n argument"));
sscanf(s,"%d", &m);
while (*++s);
break;
case 'b':
FIND(Str("no b argument"));
#if defined(USE_DOUBLE)
csound->sscanf(s,"%lf",&beg);
#else
csound->sscanf(s,"%f",&beg);
#endif
while (*++s);
break;
case 'B': FIND(Str("no B argument"));
sscanf(s,"%" SCNd64, &Beg);
while (*++s);
break;
case 'e': FIND("no e arg");
#if defined(USE_DOUBLE)
csound->sscanf(s,"%lf",&end);
#else
csound->sscanf(s,"%f",&end);
#endif
while (*++s);
break;
case 'E': FIND(Str("no E argument"));
sscanf(s,"%" PRId64, &End);
while (*++s);
break;
case 'N': FIND(Str("no N argument"));
sscanf(s,"%d", &N);
while (*++s);
break;
case 'M': FIND(Str("no M argument"));
sscanf(s,"%d", &M);
while (*++s);
break;
case 'L': FIND(Str("no L argument"));
sscanf(s,"%d", &L);
while (*++s);
break;
case 'w': FIND(Str("no w argument"));
sscanf(s,"%d", &W);
while (*++s);
break;
case 'D': FIND(Str("no D argument"));
sscanf(s,"%d", &D);
while (*++s);
break;
case 'V':
Verbose = 1; break;
default:
csound->Message(csound, Str("Looking at %c\n"), c);
return dnoise_usage(csound, -1); /* this exits with error */
}
}
}
else if (infile==NULL) {
infile = --s;
csound->Message(csound, Str("Infile set to %s\n"), infile);
}
else {
csound->Message(csound, Str("End with %s\n"), s);
return dnoise_usage(csound, -1);
}
}
}
if (UNLIKELY(infile == NULL)) {
csound->Message(csound, "%s", Str("dnoise: no input file\n"));
return dnoise_usage(csound, -1);
}
if (UNLIKELY(nfile == NULL)) {
csound->Message(csound, "%s",
Str("Must have an example noise file (-i name)\n"));
return -1;
}
if (UNLIKELY((inf = csound->SAsndgetset(csound, infile, &p, &beg_time,
&input_dur, &sr, channel)) == NULL)) {
csound->Message(csound, Str("error while opening %s"), infile);
return -1;
}
if (O.outformat == 0) O.outformat = p->format;
O.sfsampsize = csound->sfsampsize(FORMAT2SF(O.outformat));
if (O.filetyp == TYP_RAW) {
O.sfheader = 0;
O.rewrt_hdr = 0;
}
else
O.sfheader = 1;
if (O.outfilename == NULL)
O.outfilename = "test";
{
SF_INFO sfinfo;
char *name;
memset(&sfinfo, 0, sizeof(SF_INFO));
sfinfo.samplerate = (int32_t) p->sr;
sfinfo.channels = (int32_t) p->nchanls;
sfinfo.format = TYPE2SF(O.filetyp) | FORMAT2SF(O.outformat);
if (strcmp(O.outfilename, "stdout") != 0) {
name = csound->FindOutputFile(csound, O.outfilename, "SFDIR");
if (name == NULL) {
csound->Message(csound, Str("cannot open %s.\n"), O.outfilename);
return -1;
}
outfd = sf_open(name, SFM_WRITE, &sfinfo);
if (outfd != NULL)
csound->NotifyFileOpened(csound, name,
csound->type2csfiletype(O.filetyp, O.outformat), 1, 0);
csound->Free(csound, name);
}
else
outfd = sf_open_fd(1, SFM_WRITE, &sfinfo, 1);
if (UNLIKELY(outfd == NULL)) {
csound->Message(csound, Str("cannot open %s."), O.outfilename);
return -1;
}
/* register file to be closed by csoundReset() */
(void)csound->CreateFileHandle(csound, &outfd, CSFILE_SND_W,
O.outfilename);
sf_command(outfd, SFC_SET_CLIPPING, NULL, SF_TRUE);
}
csound->SetUtilSr(csound, (MYFLT)p->sr);
csound->SetUtilNchnls(csound, Chans = p->nchanls);
/* read header info */
if (R < FL(0.0))
R = (MYFLT)p->sr;
if (Chans < 0)
Chans = (int32_t) p->nchanls;
p->nchanls = Chans;
if (UNLIKELY(Chans > 2)) {
csound->Message(csound, "%s", Str("dnoise: input MUST be mono or stereo\n"));
return -1;
}
/* read noise reference file */
if (UNLIKELY((fp = csound->SAsndgetset(csound, nfile, &pn, &beg_ntime,
&input_ndur, &srn, channel)) == NULL)) {
csound->Message(csound, "%s",
Str("dnoise: cannot open noise reference file\n"));
return -1;
}
if (UNLIKELY(sr != srn)) {
csound->Message(csound, "%s", Str("Incompatible sample rates\n"));
return -1;
}
/* calculate begin and end times in NOISE file */
if (beg >= FL(0.0)) Beg = (int64_t) (beg * R);
if (end >= FL(0.0)) End = (int64_t) (end * R);
else if (End == 99999999) End = (int64_t) (input_ndur * R);
nMin = Beg * Chans; /* total number of samples to skip */
nMax = End - Beg; /* number of samples per channel to process */
/* largest valid FFT size is 8192 */
if (N == 0)
N = 1024;
for (i = 1; i < 4096; i *= 2)
if (i >= N)
break;
if (UNLIKELY(i != N))
csound->Message(csound,
Str("dnoise: warning - N not a valid power of two; "
"revised N = %d\n"),i);
//FFT setup
//printf("NNN %d \n", N);
void *fftsetup_fwd = csound->RealFFT2Setup(csound,N,FFT_FWD);
void *fftsetup_inv = csound->RealFFT2Setup(csound,N,FFT_INV);
N = i;
N2 = N / 2;
Np2 = N + 2;
Ninv = FL(1.0) / N;
if (W != -1) {
if (UNLIKELY(M != 0))
csound->Message(csound, "%s",
Str("dnoise: warning - do not specify both M and W\n"));
else if (W == 0)
M = 4*N;
else if (W == 1)
M = 2*N;
else if (W == 2)
M = N;
else if (W == 3)
M = N2;
else
csound->Message(csound, "%s", Str("dnoise: warning - invalid W ignored\n"));
}
if (M == 0)
M = N;
if ((M%2) == 0)
Meven = 1;
if (L == 0)
L = M;
if ((L%2) == 0)
Leven = 1;
if (UNLIKELY(M < 7)) {
csound->Message(csound, "%s", Str("dnoise: warning - M is too small\n"));
exit(~1);
}
if (D == 0)
D = M / 8;
I = D;
lj = (int64_t) M + 3 * (int64_t) D;
lj *= (int64_t) Chans;
if (UNLIKELY(lj > 32767)) {
csound->Message(csound, "%s", Str("dnoise: M too large\n"));
return -1;
}
lj = (int64_t) L + 3 * (int64_t) I;
lj *= (int64_t) Chans;
if (UNLIKELY(lj > 32767)) {
csound->Message(csound, "%s", Str("dnoise: L too large\n"));
return -1;
}
ibuflen = Chans * (M + 3 * D);
obuflen = Chans * (L + 3 * I);
outbufsiz = obuflen * sizeof(MYFLT); /* calc outbuf size */
#if 0
outbuf = csound->Malloc(csound, (size_t) outbufsiz); /* & alloc bufspace */
#endif
csound->Message(csound, Str("writing %u-byte blks of %s to %s"),
outbufsiz, csound->getstrformat(O.outformat),
O.outfilename);
csound->Message(csound, " (%s)\n", csound->type2string(O.filetyp));
/* spoutran = spoutsf; */
minv = FL(1.0) / (MYFLT)m;
md = m / 2;
g0 = (MYFLT) pow(10.0,(double)(0.05*(double)g0));
g0m = FL(1.0) - g0;
th = (MYFLT) pow(10.0,(double)(0.05*(double)th));
/* set up analysis window: The window is assumed to be symmetric
with M total points. After the initial memory allocation,
aWin always points to the midpoint of the window (or one
half sample to the right, if M is even); aLen is half the
true window length (rounded down). If the window duration
is longer than the transform (M > N), then the window is
multiplied by a sin(x)/x function to meet the condition:
aWin[Ni] = 0 for i != 0. In either case, the
window is renormalized so that the phase vocoder amplitude
estimates are properly scaled. */
if (UNLIKELY((aWin =
(MYFLT*) csound->Calloc(csound,
(M+Meven) * sizeof(MYFLT))) == NULL)) {
ERR(Str("dnoise: insufficient memory\n"));
}
aLen = M/2;
aWin += aLen;
hamming(aWin, aLen, Meven);
for (i = 1; i <= aLen; i++) {
aWin[-i] = aWin[i-1];
}
if (M > N) {
if (Meven)
*aWin *= (MYFLT)N * (MYFLT) sin(HALFPI/(double)N) /( HALFPI_F);
for (i = 1; i <= aLen; i++)
aWin[i] *= (MYFLT) (N * sin(PI * ((double) i + 0.5 * (double) Meven)
/ (double) N)
/ (PI * (i + 0.5 * (double) Meven)));
for (i = 1; i <= aLen; i++)
aWin[-i] = aWin[i - Meven];
}
sum = FL(0.0);
for (i = -aLen; i <= aLen; i++)
sum += aWin[i];
sum = FL(2.0) / sum; /* factor of 2 comes in later in trig identity */
for (i = -aLen; i <= aLen; i++)
aWin[i] *= sum;
/* set up synthesis window: For the minimal mean-square-error
formulation (valid for N >= M), the synthesis window
is identical to the analysis window (except for a
scale factor), and both are even in length. If N < M,
then an interpolating synthesis window is used. */
if (UNLIKELY((sWin =
(MYFLT*) csound->Calloc(csound,
(L+Leven) * sizeof(MYFLT))) == NULL)) {
ERR(Str("dnoise: insufficient memory\n"));
}
sLen = L/2;
sWin += sLen;
if (M <= N) {
hamming(sWin, sLen, Leven);
for (i = 1; i <= sLen; i++)
sWin[-i] = sWin[i - Leven];
for (i = -sLen; i <= sLen; i++)
sWin[i] *= sum;
sum = FL(0.0);
for (i = -sLen; i <= sLen; i+=I)
sum += sWin[i] * sWin[i];
sum = FL(1.0) / sum;
for (i = -sLen; i <= sLen; i++)
sWin[i] *= sum;
}
else {
hamming(sWin, sLen, Leven);
for (i = 1; i <= sLen; i++)
sWin[-i] = sWin[i - Leven];
if (Leven)
*sWin *= (MYFLT) (I * sin(HALFPI/(double) I) / (HALFPI));
for (i = 1; i <= sLen; i++)
sWin[i] *= (MYFLT)(I * sin(PI * ((double) i + 0.5 * (double) Leven)
/ (double) I)
/ (PI * ((double) i + 0.5 * (double) Leven)));
for (i = 1; i <= sLen; i++)
sWin[i] = sWin[i - Leven];
sum = FL(1.0) / sum;
for (i = -sLen; i <= sLen; i++)
sWin[i] *= sum;
}
/* set up input buffer: nextIn always points to the next empty
word in the input buffer (i.e., the sample following
sample number (n + aLen)). If the buffer is full,
then nextIn jumps back to the beginning, and the old
values are written over. */
if (UNLIKELY((ibuf1 =
(MYFLT *) csound->Calloc(csound,
ibuflen * sizeof(MYFLT))) == NULL)) {
ERR("dnoise: insufficient memory\n");
}
if (UNLIKELY((ibuf2 =
(MYFLT *) csound->Calloc(csound,
ibuflen * sizeof(MYFLT))) == NULL)) {
ERR(Str("dnoise: insufficient memory\n"));
}
/* set up output buffer: nextOut always points to the next word
to be shifted out. The shift is simulated by writing the
value to the standard output and then setting that word
of the buffer to zero. When nextOut reaches the end of
the buffer, it jumps back to the beginning. */
if (UNLIKELY((obuf1 =
(MYFLT*) csound->Calloc(csound,
obuflen * sizeof(MYFLT))) == NULL)) {
ERR(Str("dnoise: insufficient memory\n"));
}
if (UNLIKELY((obuf2 =
(MYFLT*) csound->Calloc(csound,
obuflen * sizeof(MYFLT))) == NULL)) {
ERR(Str("dnoise: insufficient memory\n"));
}
/* set up analysis buffer for (N/2 + 1) channels: The input is real,
so the other channels are redundant. */
if (UNLIKELY((fbuf =
(MYFLT*) csound->Calloc(csound, Np2 * sizeof(MYFLT))) == NULL)) {
ERR(Str("dnoise: insufficient memory\n"));
}
/* noise reduction: calculate noise reference by taking as many
consecutive FFT's as possible in noise soundfile, and
averaging them all together. Multiply by th*th to
establish threshold for noise-gating in each bin. */
if (UNLIKELY((nref =
(MYFLT*) csound->Calloc(csound,
(N2 + 1) * sizeof(MYFLT))) == NULL)) {
ERR(Str("dnoise: insufficient memory\n"));
}
if (UNLIKELY((mbuf =
(MYFLT*) csound->Calloc(csound,
(m * Np2) * sizeof(MYFLT))) == NULL)) {
ERR(Str("dnoise: insufficient memory\n"));
}
if (UNLIKELY((nbuf =
(MYFLT*) csound->Calloc(csound,
(m * Np2) * sizeof(MYFLT))) == NULL)) {
ERR(Str("dnoise: insufficient memory\n"));
}
if (UNLIKELY((rsum =
(MYFLT*) csound->Calloc(csound,
(N2 + 1) * sizeof(MYFLT))) == NULL)) {
ERR(Str("dnoise: insufficient memory\n"));
}
if (UNLIKELY((ssum =
(MYFLT*) csound->Calloc(csound,
(N2 + 1) * sizeof(MYFLT))) == NULL)) {
ERR(Str("dnoise: insufficient memory\n"));
}
/* skip over nMin samples */
while (nMin > (int64_t)ibuflen) {
if (UNLIKELY(!csound->CheckEvents(csound)))
csound->LongJmp(csound, 1);
nread = csound->getsndin(csound, fp, ibuf1, ibuflen, pn);
for(i=0; i < nread; i++)
ibuf1[i] *= 1.0/csound->Get0dBFS(csound);
if (UNLIKELY(nread < ibuflen)) {
ERR(Str("dnoise: begin time is greater than EOF of noise file!"));
}
nMin -= (int64_t) ibuflen;
}
if (UNLIKELY(!csound->CheckEvents(csound)))
csound->LongJmp(csound, 1);
i = (int32_t) nMin;
nread = csound->getsndin(csound, fp, ibuf1, i, pn);
for(i=0; i < nread; i++)
ibuf1[i] *= 1.0/csound->Get0dBFS(csound);
if (UNLIKELY(nread < i)) {
ERR(Str("dnoise: begin time is greater than EOF of noise file!"));
}
k = 0;
lj = Beg; /* single channel only */
while (lj < End) {
if (UNLIKELY(!csound->CheckEvents(csound)))
csound->LongJmp(csound, 1);
lj += (int64_t) N;
nread = csound->getsndin(csound, fp, fbuf, N, pn);
for(i=0; i < nread; i++)
fbuf[i] *= 1.0/csound->Get0dBFS(csound);
if (nread < N)
break;
fbuf[N] = FL(0.0);
fbuf[N + 1] = FL(0.0);
//fast(csound, fbuf, N);
fast2(csound, fftsetup_fwd, fbuf);
for (i = 0; i <= N+1; i++)
fbuf[i] *= Ninv;
i0 = fbuf;
i1 = i0 + 1;
for (i = 0; i <= N2; i++, i0 += 2, i1 += 2) {
fac = fbuf[2*i] * fbuf[2*i];
fac += fbuf[2*i+1] * fbuf[2*i+1];
nref[i] += fac;
}
k++;
}
if (UNLIKELY(k == 0)) {
ERR(Str("dnoise: not enough samples of noise reference\n"));
}
fac = th * th / k;
for (i = 0; i <= N2; i++)
nref[i] *= fac; /* nref[i] *= fac; */
/* initialization: input time starts negative so that the rightmost
edge of the analysis filter just catches the first non-zero
input samples; output time equals input time. */
/* zero ibuf1 to start */
memset(ibuf1, '\0', ibuflen*sizeof(MYFLT));
/* f = ibuf1; */
/* for (i = 0; i < ibuflen; i++, f++) */
/* *f = FL(0.0); */
if (UNLIKELY(!csound->CheckEvents(csound)))
csound->LongJmp(csound, 1);
/* fill ibuf2 to start */
nread = csound->getsndin(csound, inf, ibuf2, ibuflen, p);
/* nread = read(inf, ibuf2, ibuflen*sizeof(MYFLT)); */
/* nread /= sizeof(MYFLT); */
for(i=0; i < nread; i++)
ibuf2[i] *= 1.0/csound->Get0dBFS(csound);
lnread = nread;
memset(ibuf2+nread, '\0', (ibuflen-nread)*sizeof(MYFLT));
/* f = ibuf2 + nread; */
/* for (i = nread; i < ibuflen; i++, f++) */
/* *f = FL(0.0); */
//rIn = ((MYFLT) R / D);
//rOut = ((MYFLT) R / I);
invR = FL(1.0) / R;
nI = -((int64_t)aLen / D) * D; /* input time (in samples) */
nO = nI; /* output time (in samples) */
ibs = ibuflen + Chans * (nI - aLen - 1); /* starting position in ib1 */
ib1 = ibuf1; /* filled with zeros to start */
ib2 = ibuf2; /* first buffer of speech */
obs = Chans * (nO - sLen - 1); /* starting position in ob1 */
while (obs < 0) {
obs += obuflen;
first++;
}
ob1 = obuf1; /* filled with garbage to start */
ob2 = obuf2; /* first output buffer */
nImodR = nI; /* for reporting progress */
mi = 0;
mj = m - md;
if (mj >= m)
mj = 0;
mp = mi * Np2;
nMax = (int64_t)(input_dur * R); /* Do it all */
nMaxOut = (int64_t) (nMax * Chans);
while (nI < (nMax + aLen)) {
time = nI * invR;
for (chan = 0; chan < Chans; chan++) {
/* prepare for analysis: always begin reading from ib1 */
/* always begin writing to ob1 */
if (ibs >= ibuflen) { /* done reading from ib1 */
if (UNLIKELY(!csound->CheckEvents(csound)))
csound->LongJmp(csound, 1);
/* swap buffers */
ib0 = ib1;
ib1 = ib2;
ib2 = ib0;
ibs -= ibuflen;
/* fill ib2 */
nread = csound->getsndin(csound, inf, ib2, ibuflen, p);
for(i=0; i < nread; i++)
ib2[i] *= 1.0/csound->Get0dBFS(csound);
lnread += nread;
memset(ib2+nread, '\0', (ibuflen-nread)*sizeof(MYFLT));
/* f = ib2 + nread; */
/* for (i = nread; i < ibuflen; i++, f++) */
/* *f = FL(0.0); */
}
ibc = ibs + chan;
ibp = ib1 + ibs + chan;
if (obs >= obuflen) { /* done writing to ob1 */
/* dump ob1 (except at beginning) */
if (first > 0) {
first--;
}
else {
if ((oCnt + obuflen) < nMaxOut) {
oCnt += writebuffer(csound, outfd, ob1, obuflen, &nrecs, &O);
}
else {
i = (int32_t) (nMaxOut - oCnt);
oCnt += writebuffer(csound, outfd, ob1, i, &nrecs, &O);
}
}
/* zero ob1 */
memset(ob1, '\0', ibuflen*sizeof(MYFLT));
/* f = ob1; */
/* for (i = 0; i < obuflen; i++, f++) */
/* *f = FL(0.0); */
/* swap buffers */
ob0 = ob1;
ob1 = ob2;
ob2 = ob0;
obs -= obuflen;
}
obc = obs + chan;
obp = ob1 + obs + chan;
/* analysis: The analysis subroutine computes the complex output at
time n of (N/2 + 1) of the phase vocoder channels. It operates
on input samples (n - aLen) thru (n + aLen).
It expects aWin to point to the center of a
symmetric window of length (2 * aLen + 1). It is the
responsibility of the main program to ensure that these values
are correct. The results are returned in fbuf as succesive
pairs of real and imaginary values for the lowest (N/2 + 1)
channels. The subroutine fast implements an
efficient FFT call for a real input sequence. */
memset(fbuf, '\0', (N+2)*sizeof(MYFLT));
/* f = fbuf; */
/* for (i = 0; i < N+2; i++, f++) */
/* *f = FL(0.0); */
lk = nI - (int64_t) aLen - 1; /*time shift*/
while ((int64_t) lk < 0L)
lk += (int64_t) N;
k = (int32_t) (lk % (int64_t) N);
f = fbuf + k;
w = aWin - aLen;
for (i = -aLen; i <= aLen; i++, k++, f++, w++) {
ibp += Chans;
ibc += Chans;
if (ibc >= ibuflen) {
ibc = chan;
ibp = ib2 + chan;
}
if (k >= N) {
k = 0;
f = fbuf;
}
*f += *w * *ibp;
}
//fast(csound, fbuf, N);
fast2(csound, fftsetup_fwd, fbuf);
/* noise reduction: for each bin, calculate average magnitude-squared
and calculate corresponding gain. Apply this gain to delayed
FFT values in mbuf[mj*Np2 + i?]. */
if (chan == 0) {
f = rsum;
i0 = mbuf + mp;
i1 = i0 + 1;
j0 = mbuf + mj * Np2;
j1 = j0 + 1;
f0 = fbuf;
f1 = f0 + 1;
for (i = 0; i <= N2;
i++, f++, i0+=2, i1+=2, f0+=2, f1+=2, j0+=2, j1+=2) {
/*
* ii0 = 2 * i; // better as in by 2 or shift?
* ii1 = ii0 + 1;
*
* rsum[i] -= mbuf[mp + ii0] * mbuf[mp + ii0];
* rsum[i] -= mbuf[mp + ii1] * mbuf[mp + ii1];
* rsum[i] += fbuf[ii0] * fbuf[ii0];
* rsum[i] += fbuf[ii1] * fbuf[ii1];
*/
*f -= *i0 * *i0;
*f -= *i1 * *i1;
*f += *f0 * *f0;
*f += *f1 * *f1;
avg = minv * *f; /* avg = minv * rsum[i]; */
if (avg < FL(0.0))
avg = FL(0.0);
if (avg == FL(0.0))
fac = FL(0.0);
else
fac = avg / (avg + nref[i]);
for (j = 1; j < sh; j++)
fac *= fac;
gain = g0m * fac + g0;
/*
* mbuf[mp + ii0] = fbuf[ii0];
* mbuf[mp + ii1] = fbuf[ii1];
* fbuf[ii0] = gain * mbuf[mj*Np2 + ii0];
* fbuf[ii1] = gain * mbuf[mj*Np2 + ii1];
*/
*i0 = *f0;
*i1 = *f1;
*f0 = gain * *j0;
*f1 = gain * *j1;
}
}
else {
f = ssum;
i0 = nbuf + mp;
i1 = i0 + 1;
j0 = nbuf + mj * Np2;
j1 = j0 + 1;
f0 = fbuf;
f1 = f0 + 1;
for (i = 0; i <= N2;
i++, f++, i0+=2, i1+=2, f0+=2, f1+=2, j0+=2, j1+=2) {
/*
* ii0 = 2 * i;
* ii1 = ii0 + 1;
*
* ssum[i] -= nbuf[mp + ii0] * nbuf[mp + ii0];
* ssum[i] -= nbuf[mp + ii1] * nbuf[mp + ii1];
* ssum[i] += fbuf[ii0] * fbuf[ii0];
* ssum[i] += fbuf[ii1] * fbuf[ii1];
*/
*f -= *i0 * *i0;
*f -= *i1 * *i1;
*f += *f0 * *f0;
*f += *f1 * *f1;
avg = minv * *f; /* avg = minv * ssum[i]; */
if (avg < FL(0.0))
avg = FL(0.0);
if (avg == FL(0.0))
fac = FL(0.0);
else
fac = avg / (avg + nref[i]);
for (j = 1; j < sh; j++)
fac *= fac;
gain = g0m * fac + g0;
/*
* nbuf[mp + ii0] = fbuf[ii0];
* nbuf[mp + ii1] = fbuf[ii1];
* fbuf[ii0] = gain * nbuf[mj*Np2 + ii0];
* fbuf[ii1] = gain * nbuf[mj*Np2 + ii1];
*/
*i0 = *f0;
*i1 = *f1;
*f0 = gain * *j0;
*f1 = gain * *j1;
}
}
if (chan == (Chans - 1)) {
if (++mi >= m)
mi = 0;
if (++mj >= m)
mj = 0;
mp = mi * Np2;
}
/* synthesis: The synthesis subroutine uses the Weighted Overlap-Add
technique to reconstruct the time-domain signal. The (N/2 + 1)
phase vocoder channel outputs at time n are inverse Fourier
transformed, windowed, and added into the output array. */
fsst2(csound, fftsetup_inv, fbuf);
//fsst(csound, fbuf, N);
lk = nO - (int64_t) sLen - 1; /*time shift*/
while (lk < 0)
lk += (int64_t) N;
k = (int32_t) (lk % (int64_t) N);
f = fbuf + k;
w = sWin - sLen;
for (i = -sLen; i <= sLen; i++, k++, f++, w++) {
obp += Chans;
obc += Chans;
if (obc >= obuflen) {
obc = chan;
obp = ob2 + chan;
}
if (k >= N) {
k = 0;
f = fbuf;
}
*obp += *w * *f;
}
if (flag) {
if (nread < ibuflen) { /* EOF detected */
flag = 0;
if ((lnread / Chans) < nMax)
nMax = (lnread / Chans);
}
}
}
ibs += (Chans * D); /* starting point in ibuf */
obs += (Chans * I); /* starting point in obuf */
nI += (int64_t) D; /* increment time */
nO += (int64_t) I;
if (Verbose) {
nImodR += D;
if (nImodR > (int64_t) R) {
nImodR -= (int64_t) R;
csound->Message(csound,
Str("%5.1f seconds of input complete\n"),(time+D*invR));
}
}
}
nMaxOut = (int64_t) (nMax * Chans);
i = (int32_t) (nMaxOut - oCnt);
if (i > obuflen) {
writebuffer(csound, outfd, ob1, obuflen, &nrecs, &O);
i -= obuflen;
ob1 = ob2;
}
if (i > 0)
writebuffer(csound, outfd, ob1, i, &nrecs, &O);
/* csound->rewriteheader(outfd); */
csound->Message(csound, "\n\n");
if (Verbose) {
csound->Message(csound, "%s", Str("processing complete\n"));
csound->Message(csound, "N = %d\n", N);
csound->Message(csound, "M = %d\n", M);
csound->Message(csound, "L = %d\n", L);
csound->Message(csound, "D = %d\n", D);
}
return 0;
}
static const char *usage_txt[] = {
Str_noop("usage: dnoise [flags] input_file"),
"",
Str_noop("flags:"),
Str_noop("i = noise reference soundfile"),
Str_noop("o = output file"),
Str_noop("N = # of bandpass filters (1024)"),
Str_noop("w = filter overlap factor: {0,1,(2),3} DO NOT USE -w AND -M"),
Str_noop("M = analysis window length (N-1 unless -w is specified)"),
Str_noop("L = synthesis window length (M)"),
Str_noop("D = decimation factor (M/8)"),
Str_noop("b = begin time in noise reference soundfile (0)"),
Str_noop("B = starting sample in noise reference soundfile (0)"),
Str_noop("e = end time in noise reference soundfile (end)"),
Str_noop("E = final sample in noise reference soundfile (end)"),
Str_noop("t = threshold above noise reference in dB (30)"),
Str_noop("S = sharpness of noise-gate turnoff (1) (1 to 5)"),
Str_noop("n = number of FFT frames to average over (5)"),
Str_noop("m = minimum gain of noise-gate when off in dB (-40)"),
Str_noop("V : verbose - print status info"),
Str_noop("A : AIFF format output"),
Str_noop("W : WAV format output"),
Str_noop("J : IRCAM format output"),
NULL
};
static int32_t dnoise_usage(CSOUND *csound, int32_t exitcode)
{
const char **sp;
for (sp = &(usage_txt[0]); *sp != NULL; sp++)
csound->Message(csound, "%s\n", Str(*sp));
return exitcode;
}
/* report soundfile write(osfd) error */
/* called after chk of write() bytecnt */
static void sndwrterr(CSOUND *csound, int32_t nret, int32_t nput)
{
csound->Message(csound, Str("soundfile write returned sample count of %d, "
"not %d\n"), nret, nput);
csound->Message(csound, "%s", Str("(disk may be full...\n"
" closing the file ...)\n"));
/* FIXME: should clean up */
//csound->Die(csound, "%s", Str("\t... closed\n"));
}
static int32_t writebuffer(CSOUND *csound, SNDFILE *outfd,
MYFLT *outbuf, int32_t nsmps, int32_t *nrecs, OPARMS *O)
{
int32_t n;
if (UNLIKELY(outfd == NULL)) return 0;
n = sf_write_MYFLT(outfd, outbuf, nsmps);
if (UNLIKELY(n < nsmps)) {
sf_close(outfd);
sndwrterr(csound, n, nsmps);
return -1;
}
if (UNLIKELY(O->rewrt_hdr))
csound->rewriteheader(outfd);
(*nrecs)++; /* JPff fix */
switch (O->heartbeat) {
case 1:
csound->MessageS(csound, CSOUNDMSG_REALTIME, "%c\b", "|/-\\"[*nrecs & 3]);
break;
case 2:
csound->MessageS(csound, CSOUNDMSG_REALTIME, ".");
break;
case 3:
csound->MessageS(csound, CSOUNDMSG_REALTIME, "%d%n", *nrecs, &n);
while (n--) csound->MessageS(csound, CSOUNDMSG_REALTIME, "\b");
break;
case 4:
csound->MessageS(csound, CSOUNDMSG_REALTIME, "\a");
break;
}
return nsmps;
}
static void hamming(MYFLT *win, int32_t winLen, int32_t even)
{
double ftmp;
int32_t i;
ftmp = PI / winLen;
if (even) {
for (i = 0; i < winLen; i++)
win[i] = (MYFLT) (0.54 + 0.46 * cos(ftmp * ((double)i + 0.5)));
win[winLen] = FL(0.0);
}
else {
win[0] = FL(1.0);
for (i = 1; i <= winLen; i++)
win[i] = (MYFLT) (0.54 + 0.46 * cos(ftmp * (double)i));
}
}
/* module interface */
int32_t dnoise_init_(CSOUND *csound)
{
int32_t retval = csound->AddUtility(csound, "dnoise", dnoise);
if (!retval) {
retval =
csound->SetUtilityDescription(csound, "dnoise",
Str("Removes noise from a sound file"));
}
return retval;
}
|