File: hetro.c

package info (click to toggle)
csound 1%3A6.18.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 63,220 kB
  • sloc: ansic: 192,643; cpp: 14,149; javascript: 9,654; objc: 9,181; python: 3,376; java: 3,337; sh: 1,840; yacc: 1,255; xml: 985; perl: 635; lisp: 411; tcl: 341; lex: 217; makefile: 128
file content (929 lines) | stat: -rw-r--r-- 34,540 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
/*
    hetro.c:

    Copyright (C) 1992 Tom Sullivan, Richard Dobson, John ffitch

    This file is part of Csound.

    The Csound Library is free software; you can redistribute it
    and/or modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    Csound is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with Csound; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
    02110-1301 USA
*/

#include "std_util.h"                                   /*  HETRO.C   */
#include "soundio.h"
#include <math.h>
#include <inttypes.h>

//#define DEBUG 1

#ifndef WIN32
#include <unistd.h>
#endif
#define INCSDIF 1

#if INCSDIF
/*RWD need to set this to prevent sdif.h including windows.h */
#define _WINDOWS_
/* CNMAT sdif library, subject to change..... */
#include "SDIF/sdif.h"
#include "SDIF/sdif-mem.h"
typedef struct {
    sdif_float32 index, freq, amp, phase;
} SDIF_RowOf1TRC;

static int32_t is_sdiffile(char *name);
#endif

#define SQRTOF3 1.73205080756887729352
#define SQUELCH 0.5     /* % of max ampl below which delta_f is frozen */
#define HMAX    50

/* Authors:   Tom Sullivan, Nov'86, Mar'87;  bv revised Jun'92, Aug'92  */
/* Function:  Fixed frequency heterodyne filter analysis.               */
/* Simplifications and partial recoding by John Fitch Dec 1994 */
/* SDIF extensions by Richard Dobson, Aug 2000 */

/* lowest heterodyne freq = sr/bufsiz */

typedef struct {
  MYFLT    x1,x2,yA,y2,y3;      /* lpf coefficients*/
  MYFLT    cur_est,             /* current freq. est.*/
           freq_est, max_frq, max_amp,/* harm freq. est. & max vals found */
           fund_est,            /* fundamental est.*/
           t,                   /* fundamental period est.*/
           delta_t, outdelta_t, /* sampling period, outpnt period */
           sr,                  /* sampling rate */
           freq_c,              /* filter cutoff freq.*/
           beg_time, input_dur,
                                /* begin time & sample input duration*/
           **MAGS, **FREQS;     /* magnitude and freq. output buffers*/

  double *cos_mul, *sin_mul,    /* quad. term buffers*/
         *a_term, *b_term,      /*real & imag. terms*/
         *r_ampl,               /* pt. by pt. amplitude buffer*/
         *r_phase,              /* pt. by pt. phase buffer*/
         *a_avg,                /* output dev. freq. buffer*/
         new_ph,                /* new phase value*/
         old_ph,                /* previous phase value*/
         jmp_ph,                /* for phase unwrap*/
         *ph_av1, *ph_av2, *ph_av3,      /*tempor. buffers*/
         *amp_av1, *amp_av2, *amp_av3,   /* same for ampl.*/
         m_ampsum;              /* maximum amplitude at output*/
  int32_t windsiz;               /* # of pts. in one per. of sample*/
  int16  hmax;                  /* max harmonics requested */
  int32_t num_pts,               /* breakpoints per harmonic */
         amp_min;               /* amplitude cutout threshold */
  int32_t skip,                  /* flag to stop analysis if zeros*/
         bufsiz;                /* circular buffer size */
  int32_t smpsin;                /* num sampsin */
  int32_t midbuf,                /* set to bufsiz / 2   */
         bufmask;               /* set to bufsiz - 1   */
  char   *infilnam,             /* input file name */
         *outfilnam;            /* output file name */
  MYFLT  *auxp;                 /* pointer to input file */
  MYFLT  *adp;                  /* pointer to front of sample file */
  double *c_p,*s_p;             /* pointers to space for sine and cos terms */
  int32_t newformat;             /* flag for m/c independent format */
} HET;

#if INCSDIF
static int32_t writesdif(CSOUND*, HET*);
#endif
static  double  GETVAL(HET *, double *, int32);
//static  double  sq(double);
static  void    PUTVAL(HET *,double *, int32, double);
static  int32_t hetdyn(CSOUND *csound, HET *, int32_t);
static  void    lpinit(HET*);
static  void    lowpass(HET *,double *, double *, int32);
static  void    average(HET *,int32, double *, double *, int32);
static  void    output(HET *,int32, int32_t, int32_t);
static  void    output_ph(HET *, int32);
static  int32_t filedump(HET *, CSOUND *);
static  int32_t quit(CSOUND *, char *);

#define sgn(x)  (x<0.0 ? -1 : 1)
#define u(x)    (x>0.0 ? 1 : 0)

#define FIND(MSG)   if (*s == '\0')  \
    if (UNLIKELY(!(--argc) || ((s = *++argv) && *s == '-')))    \
      return quit(csound, MSG);

static void init_het(HET *t)
{
    t->freq_est  = FL(0.0);
    t->fund_est  = FL(100.0);
    t->sr        = FL(0.0);       /* sampling rate */
    t->freq_c    = FL(0.0);       /* filter cutoff freq.*/
    t->beg_time  = FL(0.0);
    t->input_dur = FL(0.0);
    t->old_ph    = 0.0;           /* previous phase value*/
    t->jmp_ph    = 0.0;           /* for phase unwrap*/
    t->m_ampsum  = 32767.0;       /* maximum amplitude at output*/
    t->hmax      = 10;            /* max harmonics requested */
    t->num_pts   = 256;           /* breakpoints per harmonic */
    t->amp_min   = 64;            /* amplitude cutout threshold */
    t->bufsiz    = 1;             /* circular buffer size */
    t->skip      = 0;             /* JPff: this was missing */
    t->newformat = 1;
}

static int32_t hetro(CSOUND *csound, int32_t argc, char **argv)
{
    SNDFILE *infd;
    int32_t i, hno, channel = 1, retval = 0;
    int32   nsamps, smpspc, bufspc, mgfrspc;
    char    *dsp, *dspace;
    double  *begbufs, *endbufs;
    HET     het;
    HET     *t = &het;
    SOUNDIN *p;         /* space allocated by SAsndgetset() */

 /* csound->dbfs_to_float = csound->e0dbfs = FL(1.0);   Needed ? */
    init_het(t);

    if (UNLIKELY(!(--argc))) {
      return quit(csound,Str("no arguments"));
    }
    do {
      char *s = *++argv;
      if (*s++ == '-')
        switch (*s++) {
        case 's':
          FIND(Str("no sampling rate"))
#if defined(USE_DOUBLE)
          csound->sscanf(s,"%lf",&t->sr);
#else
          csound->sscanf(s,"%f",&t->sr);
#endif
          break;
        case 'c':
          FIND(Str("no channel"))
          sscanf(s,"%d",&channel);
          break;
        case 'b':
          FIND(Str("no begin time"))
#if defined(USE_DOUBLE)
          csound->sscanf(s,"%lf",&t->beg_time);
#else
          csound->sscanf(s,"%f",&t->beg_time);
#endif
          break;
        case 'd':
          FIND(Str("no duration time"))
#if defined(USE_DOUBLE)
          csound->sscanf(s,"%lf",&t->input_dur);
#else
          csound->sscanf(s,"%f",&t->input_dur);
#endif
          break;
        case 'f':
          FIND(Str("no fundamental estimate"))
#if defined(USE_DOUBLE)
          csound->sscanf(s,"%lf",&t->fund_est);
#else
          csound->sscanf(s,"%f",&t->fund_est);
#endif
          break;
        case 'h':
          FIND(Str("no harmonic count"))
          sscanf(s,"%hd",&t->hmax);
          if (UNLIKELY(t->hmax > HMAX))
            csound->Message(csound, Str("over %d harmonics but continuing"),
                            HMAX);
          if (UNLIKELY(t->hmax < 1)) {
            csound->Message(csound,Str("h of %d too low, reset to 1\n"),
                            t->hmax);
                t->hmax = 1;
          }
          break;
        case 'M':
          FIND(Str("no amplitude maximum"))
          csound->sscanf(s,"%lf",&t->m_ampsum);
          break;
        case 'm':
          FIND(Str("no amplitude minimum"))
          sscanf(s,"%d",&t->amp_min);
          break;
        case 'n':
          FIND(Str("no number of output points"))
          sscanf(s,"%d",&t->num_pts);
          break;
        case 'l':
          FIND(Str("no filter cutoff"))
#if defined(USE_DOUBLE)
          csound->sscanf(s,"%lf",&t->freq_c);
#else
          csound->sscanf(s,"%f",&t->freq_c);
#endif
          break;
        case 'X':
          het.newformat = 1;
          break;
        case 'x':
          het.newformat = 0;
          break;
        case '-':
          FIND(Str("no log file"));
          while (*s++) {}; s--;
          break;
        default:
          return quit(csound, Str("Invalid switch option"));
        }
      else break;
    } while (--argc);

    if (UNLIKELY(argc != 2))
      return quit(csound, Str("incorrect number of filenames"));
    t->infilnam = *argv++;
    t->outfilnam = *argv;

    if (UNLIKELY(t->freq_c > 1))
      csound->Message(csound, Str("Filter cutoff freq. = %f\n"),
                              t->freq_c);

    if (UNLIKELY((t->input_dur < 0) || (t->beg_time < 0)))
      return quit(csound,Str("input and begin times cannot be less than zero"));
    /* open sndfil, do skiptime */
    if (UNLIKELY((infd = csound->SAsndgetset(csound, t->infilnam, &p,
                                    &t->beg_time, &t->input_dur,
                                             &t->sr, channel)) == NULL)) {
      char errmsg[256];
      snprintf(errmsg, 256, Str("Cannot open %s"), t->infilnam);
      return quit(csound, errmsg);
    }
    nsamps = p->getframes;
    /* alloc for MYFLTs */
    t->auxp = (MYFLT*) csound->Malloc(csound, nsamps * sizeof(MYFLT));
    /* & read them in */
    if (UNLIKELY((t->smpsin =
                  csound->getsndin(csound, infd,
                                   t->auxp, nsamps, p)) <= 0)) {
      char errmsg[256];
      csound->Message(csound, "smpsin = %"PRId64"\n", (int64_t) t->smpsin);
      snprintf(errmsg, 256, Str("Read error on %s\n"), t->infilnam);
      return quit(csound, errmsg);
    }
    t->sr = (MYFLT) p->sr;                /* sr now from open  */
    /* samps in fund prd */
    t->windsiz = (int32)(t->sr / t->fund_est /*+ FL(0.5)*/);
    //printf("widsize = %d\n", t->windsiz);
#if INCSDIF
    /* RWD no limit for SDIF files! */
    if (is_sdiffile(t->outfilnam)) {
      if (UNLIKELY(t->num_pts >= nsamps - t->windsiz))
        return quit(csound, Str("number of output points is too great"));
    }
    else
#endif
      if (UNLIKELY(t->num_pts > 32767 ||
                   t->num_pts >= nsamps - t->windsiz))
        return quit(csound, Str("number of output points is too great"));
    t->delta_t = FL(1.0)/t->sr;
    t->t = FL(1.0)/t->fund_est;
    t->outdelta_t = (MYFLT) t->num_pts
                          / (t->smpsin - t->windsiz);
    //printf("sizes: delta_t = %f t = %f outdelta = %f\n",
    //       t->delta_t, t->t, t->outdelta_t);
    while (t->bufsiz < t->windsiz)
      t->bufsiz *= 2;
    t->midbuf = t->bufsiz/2;
    t->bufmask = t->bufsiz - 1;

    smpspc = t->smpsin * sizeof(double);
    bufspc = t->bufsiz * sizeof(double);
//printf("sizes2: smpspc - %d  bufspc - %d\n", smpspc, bufspc);
    dsp = dspace = csound->Calloc(csound, smpspc * 2 + bufspc * 13);
    t->c_p = (double *) dsp;      dsp += smpspc;  /* space for the    */
    t->s_p = (double *) dsp;      dsp += smpspc;  /* quadrature terms */
    begbufs = (double *) dsp;
    t->cos_mul = (double *) dsp;  dsp += bufspc;  /* bufs that will be */
    t->sin_mul = (double *) dsp;  dsp += bufspc;  /* refilled each hno */
    t->a_term = (double *) dsp;   dsp += bufspc;
    t->b_term = (double *) dsp;   dsp += bufspc;
    t->r_ampl = (double *) dsp;   dsp += bufspc;
    t->ph_av1 = (double *) dsp;   dsp += bufspc;
    t->ph_av2 = (double *) dsp;   dsp += bufspc;
    t->ph_av3 = (double *) dsp;   dsp += bufspc;
    t->r_phase = (double *) dsp;  dsp += bufspc;
    t->amp_av1 = (double *) dsp;  dsp += bufspc;
    t->amp_av2 = (double *) dsp;  dsp += bufspc;
    t->amp_av3 = (double *) dsp;  dsp += bufspc;
    t->a_avg = (double *) dsp;    dsp += bufspc;
    endbufs = (double *) dsp;

    mgfrspc = t->num_pts * sizeof(MYFLT);
    dsp = csound->Malloc(csound, mgfrspc * t->hmax * 2);
    t->MAGS = (MYFLT **) csound->Malloc(csound,
                                              t->hmax * sizeof(MYFLT*));
    t->FREQS = (MYFLT **) csound->Malloc(csound,
                                               t->hmax * sizeof(MYFLT*));
    for (i = 0; i < t->hmax; i++) {
      t->MAGS[i] = (MYFLT *) dsp;    dsp += mgfrspc;
      t->FREQS[i] = (MYFLT *) dsp;   dsp += mgfrspc;
    }
    lpinit(t);                        /* calculate LPF coeffs.  */
    t->adp = t->auxp;           /* point to beg sample data block */
    for (hno = 0; hno < t->hmax; hno++) { /* for requested harmonics */
      double *dblp;
      t->freq_est += t->fund_est; /*   do analysis */
      t->cur_est = t->freq_est;
      dblp = begbufs;
      // TODO? memset(begbufs, '\0', (endbufs-begbufs)*sizeof(double));
      do {
        *dblp++ = FL(0.0);                    /* clear all refilling buffers */
      } while (dblp < endbufs);
      t->max_frq = FL(0.0);
      t->max_amp = -FL(1.0);

      csound->Message(csound,Str("analyzing harmonic #%d\n"),hno);
      csound->Message(csound,Str("freq estimate %6.1f,"), t->cur_est);
      if (hetdyn(csound, t, hno) != 0)  /* perform actual computation */
        return -1;
      if (!csound->CheckEvents(csound))
        return -1;
      csound->Message(csound, Str(" max found %6.1f, rel amp %6.1f\n"),
                              t->max_frq, t->max_amp);
    }
    csound->Free(csound, dspace);
#if INCSDIF
    /* RWD if extension is .sdif, write as 1TRC frames */
    if (is_sdiffile(t->outfilnam)) {
      if (UNLIKELY(!writesdif(csound,t))) {
        csound->Message(csound, "%s", Str("Unable to write to SDIF file\n"));
        retval = -1;
      }
    }
    else
#endif
      retval |= filedump(t, csound);  /* write output to adsyn file */

    return retval;
}

static double GETVAL(HET* t, double *inb, int32 smpl)
{                               /* get value at position smpl in array inb */
    if (smpl<0) return 0.0;
    return   inb[(smpl + t->midbuf) & t->bufmask];
}

static void PUTVAL(HET* t, double *outb, int32 smpl, double value)
{                               /* put value in array outb at postn smpl */
    outb[(smpl + t->midbuf) & t->bufmask] = value;
}

static int32_t hetdyn(CSOUND *csound,
                      HET* t, int32_t hno) /* HETERODYNE FILTER */
{
    int32   smplno;
    double  temp_a, temp_b, tpidelest;
    double  *cos_p, *sin_p;
    int32   n;
    int32_t outpnt, lastout = -1;
    MYFLT   *ptr;

    t->jmp_ph = 0;                     /* set initial phase to 0 */
    temp_a = temp_b = 0;
    cos_p = t->c_p;
    sin_p = t->s_p;
    tpidelest = TWOPI * t->cur_est * t->delta_t;
    for (smplno = 0; smplno < t->smpsin; smplno++) {
      //double phase = smplno * tpidelest;     /* do all quadrature calcs */
      ptr = t->adp;           /* at once and point to it */
      cos_p[smplno] = (double)(ptr[smplno] * cos(smplno * tpidelest));
      sin_p[smplno] = (double)(ptr[smplno] * sin(smplno * tpidelest));
    }

    for (smplno = 0; smplno < t->smpsin - t->windsiz; smplno++) {
      cos_p = t->c_p + smplno;
      sin_p = t->s_p + smplno;
      if (smplno == 0 && t->smpsin >= t->windsiz) {
        /* for first smplno */
        for (n=0; n< t->windsiz; n++) {
          //printf("cos/sin = %f / %f\n", cos_p[n], sin_p[n]);
          temp_a += cos_p[n];     /* sum over windsiz = nsmps in */
          temp_b += sin_p[n];     /*    1 period of fund. freq.  */
          //printf("temp = %f / %f\n", temp_a, temp_b);
        }
      }
      else {      /* if more than 1 fund. per. away from file end */
                  /* remove front value and add on new rear value */
                  /* to obtain summation term for new sample! */
        if (smplno <= t->smpsin - t->windsiz) {
          temp_a += cos_p[t->windsiz - 1] - cos_p[-1];  /* _wp = _p + windsiz */
          temp_b += sin_p[t->windsiz - 1] - sin_p[- 1];
          //printf("**temp = %f / %f\n", temp_a, temp_b);
        }
        else {
          t->skip = 1;
          temp_a = temp_b = 0;
        }
      }
      /* store values into buffers */
      //printf("**temp = %f / %f\n", temp_a, temp_b);
      PUTVAL(t, t->cos_mul, smplno, temp_a);
      PUTVAL(t, t->sin_mul, smplno, temp_b);
      if ((t->freq_c <= 1) || (smplno < 3)) {
        average(t, t->windsiz, t->cos_mul, t->a_term,
                         smplno); /* average over previous */
        average(t, t->windsiz, t->sin_mul, t->b_term,
                         smplno); /* values 1 fund prd ago */
        //printf("average smplno=%d sin/cos = %f/%f\n",
        // smplno,GETVAL(t,t->sin_mul, smplno), GETVAL(t,t->cos_mul, smplno));
      }
      else {
        lowpass(t, t->a_term,t->cos_mul,smplno);
        lowpass(t, t->b_term,t->sin_mul,smplno);
        //printf("lowpass smplno=%d sin/cos = %f/%f\n",
        //       smplno,GETVAL(t,t->sin_mul, smplno),
        //       GETVAL(t,t->cos_mul, smplno));
      }
      output_ph(t, smplno);       /* calculate mag. & phase for sample */
      if ((outpnt = (int32_t)(smplno * t->outdelta_t)) > lastout) {
        /* if next out-time */
        output(t, smplno, hno, outpnt);  /*     place in     */
        lastout = outpnt;                      /*     output array */
        if (!csound->CheckEvents(csound))
          return -1;
      }
      if (t->skip) {
        t->skip = 0;       /* quit if no more samples in file */
        break;
      }
    }

    return 0;
}

static void lpinit(HET *t) /* lowpass coefficient ititializer */
{               /* 3rd order butterworth LPF coefficients calculated using */
                /* impulse invariance */
    MYFLT costerm,sinterm;
    double omega_c;

    omega_c = t->freq_c*TWOPI;
    costerm = (MYFLT)cos(SQRTOF3*omega_c*t->delta_t*0.5);
    sinterm = (MYFLT)sin(SQRTOF3*omega_c*t->delta_t*0.5);
    t->x1 = (MYFLT)(omega_c*t->delta_t*
                          (exp(-omega_c*t->delta_t) +
                           exp(-omega_c*t->delta_t/2.0)
                           * (-costerm + sinterm/SQRTOF3)));
    t->x2 = (MYFLT)(omega_c*t->delta_t*
                          (exp(-omega_c*t->delta_t) -
                           exp(-3*omega_c*t->delta_t/2)
                           * (costerm + sinterm/SQRTOF3)));
    t->yA = (-((MYFLT)exp(-omega_c*t->delta_t) +
            FL(2.0)*(MYFLT)exp(-omega_c*t->delta_t/2)*costerm));
    t->y2 = FL(2.0) * (MYFLT)exp(-3.0*omega_c*t->delta_t/2.0)*costerm +
            (MYFLT)exp(-omega_c*t->delta_t);
    t->y3 = (-(MYFLT)exp(-2.0*omega_c*t->delta_t));
}

static void lowpass(HET *t, double *out, double *in, int32 smpl)
  /* call with x1,x2,yA,y2,y3 initialised  */
  /* calls LPF function */
{
    PUTVAL(t, out, smpl,
           (t->x1 *
            GETVAL(t,in,smpl-1) + t->x2 * GETVAL(t,in,smpl-2) -
            t->yA * GETVAL(t,out,smpl-1) - t->y2 *
            GETVAL(t,out,smpl-2) -
            t->y3 * GETVAL(t,out,smpl-3)));
}

static void average(HET *t, int32 window,double *in,double *out, int32 smpl)
  /* AVERAGES OVER 'WINDOW' SAMPLES */
  /* this is actually a comb filter with 'Z' */
  /* transform of (1/w *[1 - Z**-w]/[1 - Z**-1]) */
  /* ie. zeros at all harmonic frequencies except*/
  /* the current one where the pole cancels it */
{
    //if (smpl==0) return;
    if (smpl<window) {
      //printf("inside window: %f %f\n", GETVAL(t,out,smpl-1), GETVAL(t,in,smpl));
      PUTVAL(t,out, smpl,
             (double)(GETVAL(t,out,smpl-1) +
                      (1.0/(double)window) * (GETVAL(t,in,smpl))));
    }
    else {
      //printf("outside window: %f %f %f\n", GETVAL(t,out,smpl-1),
      //       GETVAL(t,in,smpl), GETVAL(t,in,smpl-window));
      PUTVAL(t,out, smpl,
             (double)(GETVAL(t,out,smpl-1) +
                      (1.0/(double)window) *
                      (GETVAL(t,in,smpl) - GETVAL(t,in,smpl-window))));
    }
}

                                 /* update phase counter */
static void output_ph(HET *t,int32 smpl)
                                /* calculates magnitude and phase components */
                                /* for each samples quadrature components, & */
                                /* and unwraps the phase.  A phase difference*/
{                               /* is taken to represent the freq. change.   */
    double      delt_temp;      /* the pairs are then comb filtered.         */
    double      temp_a;

    //printf("phase: %f %f\n", GETVAL(t, t->a_term,smpl), GETVAL(t,t->b_term,smpl));
    if ((temp_a=GETVAL(t,t->a_term,smpl)) == 0)
            t->new_ph=
              (-PI/FL(2.0))*sgn(GETVAL(t,t->b_term,smpl));
    else t->new_ph=
           -atan(GETVAL(t,t->b_term,smpl)/temp_a) - PI*u(-temp_a);

    if (fabs((double)t->new_ph - t->old_ph)>PI)
      t->jmp_ph -= TWOPI*sgn(temp_a);

    //printf("output-ph: %f ->%f\n",t->old_ph, t->new_ph);
    t->old_ph = t->new_ph;
    PUTVAL(t,t->r_phase,smpl,t->old_ph+t->jmp_ph);
    delt_temp = ((GETVAL(t,t->r_phase,smpl) -
                  GETVAL(t,t->r_phase,smpl-1))/
                 (TWOPI*t->delta_t));
    if ((t->freq_c <= 1) || (smpl < 3)) {
      PUTVAL(t,t->amp_av1,smpl,
             (MYFLT)hypot(GETVAL(t,t->a_term,smpl),
                          GETVAL(t,t->b_term,smpl)));
      average(t, t->windsiz,t->amp_av1,t->amp_av2,smpl);
      average(t, t->windsiz,t->amp_av2,t->amp_av3,smpl);
      average(t, t->windsiz,t->amp_av3,t->r_ampl,smpl);
      PUTVAL(t,t->ph_av1,smpl,delt_temp);
      average(t, t->windsiz,t->ph_av1,t->ph_av2,smpl);
      average(t, t->windsiz,t->ph_av2,t->ph_av3,smpl);
      average(t, t->windsiz,t->ph_av3,t->a_avg,smpl);
      //printf("AV3: %f (%d) %d\n", GETVAL(t, t->a_avg,smpl), smpl, t->windsiz);
    }
    else {
      PUTVAL(t,t->r_ampl,smpl,
              (MYFLT)hypot(GETVAL(t,t->a_term,smpl),
                           GETVAL(t,t->b_term,smpl)));
      PUTVAL(t,t->a_avg,smpl,delt_temp);
    }
    //printf("***r_ampl[%d]= %f\n", smpl, GETVAL(t,t->r_ampl,smpl));
}

static void output(HET *t, int32 smpl, int32_t hno, int32_t pnt)
                        /* output one freq_mag pair */
                        /* when called, gets frequency change */
                        /* and adds it to current freq. stores*/
{                       /* current amp and new freq in arrays */
    double delt_freq;
    MYFLT  new_amp, new_freq;

    if (pnt < t->num_pts) {
      delt_freq = GETVAL(t,t->a_avg,smpl); /* 0.5 for rounding ? */
      t->FREQS[hno][pnt] =
        new_freq = (MYFLT)(delt_freq + t->cur_est);
      t->MAGS[hno][pnt] =
        new_amp = (MYFLT)GETVAL(t, t->r_ampl,smpl);
      if (new_freq > t->max_frq)
        t->max_frq = new_freq;
      //printf("** new_amp %f; max_amp = %f\n", new_amp, t->max_amp);
      if (new_amp > t->max_amp) {
        //printf("******** update\n");
        t->max_amp = new_amp;
      }
    }
}

static int32_t quit(CSOUND *csound, char *msg)
{
    csound->ErrorMsg(csound, Str("hetro:  %s\n\tanalysis aborted"), msg);
    return -1;
}

#define END 32767

/* WRITE OUTPUT FILE in DATA-REDUCED format */

static int32_t filedump(HET *t, CSOUND *csound)
{
    int32_t h, pnt, ofd, nbytes;
    double  scale,x,y;
    int16   **mags, **freqs, *magout, *frqout;
    double  ampsum, maxampsum = 0.0;
    int32   lenfil = 0;
    int16   *TIME;
    MYFLT   timesiz;
    FILE    *ff;

    mags  = (int16 **) csound->Malloc(csound, t->hmax * sizeof(int16*));
    freqs = (int16 **) csound->Malloc(csound, t->hmax * sizeof(int16*));
    for (h = 0; h < t->hmax; h++) {
      mags[h]  = (int16 *)csound->Malloc(csound,
                                        (t->num_pts+2) * sizeof(int16));
      freqs[h] = (int16 *)csound->Malloc(csound,
                                         (t->num_pts+2) * sizeof(int16));
    }

    TIME = (int16 *)csound->Malloc(csound, (t->num_pts+2) * sizeof(int16));
    timesiz = FL(1000.0) * t->input_dur /t->num_pts;
    for (pnt = 0; pnt < t->num_pts; pnt++)
      TIME[pnt] = (int16)(pnt * timesiz);

    /* fullpath else cur dir */
    if (t->newformat) {
      if (UNLIKELY(csound->FileOpen2(csound, &ff, CSFILE_STD, t->outfilnam,
                                     "w", "", CSFTYPE_HETROT, 0) == NULL))
      return quit(csound, Str("cannot create output file\n"));
    } else
      if (UNLIKELY(csound->FileOpen2(csound, &ofd, CSFILE_FD_W, t->outfilnam,
                                     NULL, "", CSFTYPE_HETRO, 0) == NULL))
        return quit(csound, Str("cannot create output file\n"));

    if (t->newformat)
      fprintf(ff,"HETRO %d\n", t->hmax);        /* Header */
    else {
      if (UNLIKELY(write(ofd, (char*)&t->hmax, sizeof(t->hmax))<0))
        csound->Message(csound,"%s", Str("Write failure\n")); /* Write header */
    }
    for (pnt=1; pnt < t->num_pts+1; pnt++) {
      ampsum = 0.0;
      for (h = 0; h < t->hmax; h++)
        ampsum += t->MAGS[h][pnt];
      if (ampsum > maxampsum)
        maxampsum = ampsum;
    }
    scale = t->m_ampsum / maxampsum;
    csound->Message(csound,Str("scale = %f\n"), scale);

    for (h = 0; h < t->hmax; h++) {
      for (pnt = 0; pnt < t->num_pts+1; pnt++) {
        x = t->MAGS[h][pnt] * scale;
        mags[h][pnt] = (int16)(x*u(x)+0.5);
        y = t->FREQS[h][pnt];
        freqs[h][pnt] = (int16)(y*u(y)+0.5);
        //printf("***mags[%d][%d] = %f (%hd)\tfreqs[%d][%d] = %f (%hd)\n",
        //       h, pnt,x, mags[h][pnt], h, pnt, y, freqs[h][pnt]);
      }
    }

    magout = (int16 *)csound->Malloc(csound,
                                     (t->num_pts+1) * 2 * sizeof(int16));
    frqout = (int16 *)csound->Malloc(csound,
                                     (t->num_pts+1) * 2 * sizeof(int16));

    for (h = 0; h < t->hmax; h++) {
      int16 *mp = magout, *fp = frqout;
      int16 *lastmag, *lastfrq, pkamp = 0;
      int32_t mpoints, fpoints/*, contig = 0*/;
      *mp++ = -1;                      /* set brkpoint type codes  */
      *fp++ = -2;
      lastmag = mp;
      lastfrq = fp;
      for (pnt = 0; pnt < t->num_pts; pnt++) {
        int16 tim, mag, frq;
        tim = TIME[pnt];
        frq = freqs[h][pnt];
        if ((mag = mags[h][pnt]) > pkamp)
          pkamp = mag;
        //printf("****(%d,%d)time, mag, frq = %hd / %hd %hd\n",
        //       h, pnt, tim, mag, frq);
        if (mag > t->amp_min) {
#if 0
          if (contig > 2) {        /* if third time this value  */
            if ((mag == *(mp-1) && mag == *(mp-3))
                                   /*    or 2nd time this slope */
                || ((MYFLT)(mag - *(mp-1)) / (tim - *(mp-2)) ==
                    (MYFLT)(*(mp-1) - *(mp-3)) / (*(mp-2) - *(mp-4))))
              mp -= 2;              /* overwrite the previous */
            if ((frq == *(fp-1) && frq == *(fp-3))
                || ((MYFLT)(frq - *(fp-1)) / (tim - *(fp-2)) ==
                    (MYFLT)(*(fp-1) - *(fp-3)) / (*(fp-2) - *(fp-4))))
              fp -= 2;
          }
#endif
          *mp++ = tim;
          *mp++ = mag;
          *fp++ = tim;
          *fp++ = frq;
          lastmag = mp;         /* record last significant seg  */
          lastfrq = fp;
          //contig++;
        }
        else {
          if (mp > lastmag) {   /* for non-significant segments */
            mp = lastmag + 2; /*   only two points necessary  */
            fp = lastfrq + 2; /*   to peg the ends            */
          }
          *mp++ = tim;
          *mp++ = 0;
          *fp++ = tim;
          *fp++ = frq;
          //contig = 0;
        }
      }
      if (lastmag < mp) {          /* if last signif not last point */
        mp = lastmag + 2;        /*   make it the penultimate mag */
        fp = lastfrq + 2;
      }
      *(mp-1) = 0;                 /* force the last mag to zero    */
      if (fp - frqout > 3)
        *(fp-1) = *(fp-3);       /*   & zero the freq change      */
      *mp++ = END;                 /* add the sequence delimiters   */
      *fp++ = END;
      mpoints = ((mp - magout) / 2) - 1;
      nbytes = (mp - magout) * sizeof(int16);
      if (t->newformat) {
        int32_t i;
        for (i=0; i<(mp - magout); i++)
          fprintf(ff,"%hd%c", magout[i], i==(mp-magout-1)?'\n':',');
      }
      else {
        if (UNLIKELY(write(ofd, (char *)magout, nbytes)<0))
          csound->Message(csound, "%s", Str("Write failure\n"));
      }
#ifdef DEBUG
      {
        int32_t i;
        for (i=0; i<(mp-magout); i++)
          csound->Message(csound, "%hd,", magout[i]);
        csound->Message(csound, "\n");
      }
#endif
      lenfil += nbytes;
      fpoints = ((fp - frqout) / 2) - 1;
      nbytes = (fp - frqout) * sizeof(int16);
      if (t->newformat) {
        int32_t i;
        for (i=0; i<fp - frqout; i++)
          fprintf(ff,"%hd%c", frqout[i], i==(fp-frqout-1)?'\n':',');
        fprintf(ff,"\n");
      }
      else {
        if (UNLIKELY(write(ofd, (char *)frqout, nbytes)<0))
          csound->Message(csound, "%s", Str("Write failure\n"));
      }
#ifdef DEBUG
      {
        int32_t i;
        for (i=0; i<(fp-frqout); i++)
          csound->Message(csound, "%hd,", frqout[i]);
        csound->Message(csound, "\n");
      }
#endif
      lenfil += nbytes;
      csound->Message(csound,
                      Str("harmonic #%d:\tamp points %d, \tfrq points %d,"
                          "\tpeakamp %d\n"),
                      h, mpoints, fpoints, pkamp);
    }
    csound->Message(csound, "%s%" PRId64 " %s%s\n", Str("wrote "),
                    (int64_t)lenfil, Str("bytes to "), t->outfilnam);
    csound->Free(csound, magout);
    csound->Free(csound, frqout);
    csound->Free(csound, TIME);
    for (h = 0; h < t->hmax; h++) {
      csound->Free(csound, mags[h]);
      csound->Free(csound, freqs[h]);
    }
    csound->Free(csound, mags);
    csound->Free(csound, freqs);

    return 0;
}

#if INCSDIF
/* simply writes the number of frames generated - no data reduction,
   no interpolation */

static int32_t writesdif(CSOUND *csound, HET *t)
{
    int32_t     i,j,h, pnt;
    double      scale;
    double      ampsum, maxampsum = 0.0;
    MYFLT       timesiz;
    SDIFresult  r;
    SDIF_FrameHeader head;
    SDIF_MatrixHeader mh;
    FILE        *sdiffile = NULL;

    if (UNLIKELY(SDIF_Init() != ESDIF_SUCCESS)) {
      csound->Message(csound,
                      "%s", Str("OOPS: SDIF does not work on this machine!\n"));
      return 0;
    }

    /* esential rescaling, from filedump() above  */
    for (pnt=0; pnt < t->num_pts; pnt++) {
      ampsum = 0.0;
      for (h = 0; h < t->hmax; h++)
        ampsum += t->MAGS[h][pnt];
      if (ampsum > maxampsum)
        maxampsum = ampsum;
    }
    scale = t->m_ampsum / maxampsum;
    /* SDIF does not specify a range, 'cos it's too clever for that sort
     * of thing, but this seems consistent with existing examples! */
    scale *= (double) (1.0/csound->Get0dBFS(csound));

    for (h = 0; h < t->hmax; h++) {
      for (pnt = 0; pnt < t->num_pts; pnt++) {
        t->MAGS[h][pnt] *= (MYFLT) scale;
        /* skip code to force positive values, for now */
      }
    }

    if (UNLIKELY((r =
                  SDIF_OpenWrite(t->outfilnam, &sdiffile))!=ESDIF_SUCCESS)) {
      /* can get SDIF error messages, but trickly for CSTRINGS */
      csound->Message(csound,Str("Error creating %s\n"),t->outfilnam);
      fclose(sdiffile);
      return 0;
    }
    csound->NotifyFileOpened(csound, t->outfilnam, CSFTYPE_SDIF, 1, 0);

    SDIF_Copy4Bytes(head.frameType,"1TRC");
    head.streamID = SDIF_UniqueStreamID();
    head.matrixCount = 1;                       /*  data matrix */
    /* frame size =  sizeof (data matrix) + frame header fields*/
    /* add main header fields: time,ID,matrixcount */
    head.size = sizeof(sdif_float64) + 2 * sizeof(sdif_int32);
    /* add header block of a matrix: ID,datatype,nrows,ncols  */
    head.size += 4 * sizeof(sdif_int32);
    /* add size of data  */
    /* row count can be different each matrix, in SDIF, but not here! */
    head.size += 4 * sizeof(sdif_float32) * t->hmax;
    /* no padding bytes */
    /*timesiz = 1000.0f * t->input_dur / t->num_pts;*/
    timesiz = t->input_dur / t->num_pts;
    /* do not even need a TIME array */

    /* main loop to write 1TRC frames */
    for (i=0; i < t->num_pts; i++) {
      sdif_float32 amp,freq,phase = 0.0f;
      /* cannot offer anything interesting with phase! */
      head.time = (sdif_float32) ((MYFLT)i * timesiz);
      if (UNLIKELY((r = SDIF_WriteFrameHeader(&head,sdiffile))!=ESDIF_SUCCESS)) {
        csound->Message(csound,"%s", Str("Error writing SDIF frame header.\n"));
        return 0;
      }
      /*setup data matrix */
      mh.rowCount = t->hmax ;
      mh.columnCount = 4;
      SDIF_Copy4Bytes(mh.matrixType,"1TRC");
      mh.matrixDataType = SDIF_FLOAT32;
      if (UNLIKELY((r = SDIF_WriteMatrixHeader(&mh,sdiffile))!=ESDIF_SUCCESS)) {
        csound->Message(csound,"%s", Str("Error writing SDIF matrix header.\n"));
        return 0;
      }
      for (j=0;j < t->hmax;j++) {
        sdif_float32 index;
        /* zero index not used in SDIF */
        index = (sdif_float32)(j+1);
        amp = (sdif_float32) t->MAGS[j][i];
        freq = (sdif_float32) t->FREQS[j][i];
        if (UNLIKELY(((r = SDIF_Write4(&index,1,sdiffile))!= ESDIF_SUCCESS) ||
                     ((r = SDIF_Write4(&freq,1,sdiffile))!= ESDIF_SUCCESS)  ||
                     ((r = SDIF_Write4(&amp,1,sdiffile))!= ESDIF_SUCCESS)   ||
                     ((r = SDIF_Write4(&phase,1,sdiffile))!= ESDIF_SUCCESS))) {
          csound->Message(csound,"%s", Str("Error writing SDIF data.\n"));
          return 0;
        }
      }
      /* 64-bit alignment can be relied upon here, so no need to calc padding */
    }
    csound->Message(csound,
                    Str("wrote %d 1TRC frames to %s\n"),
                    t->num_pts, t->outfilnam);
    SDIF_CloseWrite(sdiffile);
    return 1;
}

static int32_t is_sdiffile(char *name)
{
    char *dot;
    if (name==NULL || strlen(name) < 6)
      return 0;
    dot = strrchr(name,'.');
    if (dot==NULL)
      return 0;
    if (strcmp(dot,".sdif")==0 ||
        strcmp(dot,".SDIF")==0)
      return 1;
    return 0;
}
#endif

/* module interface */

int32_t hetro_init_(CSOUND *csound)
{
    int32_t retval = csound->AddUtility(csound, "hetro", hetro);
    if (!retval) {
      retval = csound->SetUtilityDescription(csound, "hetro",
                                             Str("Soundfile analysis for adsyn"));
    }
    return retval;
}