File: moog1.c

package info (click to toggle)
csound 1%3A6.18.1%2Bdfsg-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 63,220 kB
  • sloc: ansic: 192,643; cpp: 14,149; javascript: 9,654; objc: 9,181; python: 3,376; java: 3,337; sh: 1,840; yacc: 1,255; xml: 985; perl: 635; lisp: 411; tcl: 341; lex: 217; makefile: 128
file content (297 lines) | stat: -rw-r--r-- 10,812 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/*
    moog1.c:

    Copyright (C) 1996, 1997 Perry Cook, John ffitch

    This file is part of Csound.

    The Csound Library is free software; you can redistribute it
    and/or modify it under the terms of the GNU Lesser General Public
    License as published by the Free Software Foundation; either
    version 2.1 of the License, or (at your option) any later version.

    Csound is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public
    License along with Csound; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
    02110-1301 USA
*/

// #include "csdl.h"
#include "csoundCore.h"
#include "moog1.h"

extern void make_TwoZero(TwoZero *);
extern void TwoZero_setZeroCoeffs(TwoZero *, MYFLT*);
extern MYFLT TwoZero_tick(TwoZero *, MYFLT);

/********************************************/
/*  Sweepable Formant (2-pole)              */
/*  Filter Class, by Perry R. Cook, 1995-96 */
/*  See books on filters to understand      */
/*  more about how this works.  This drives */
/*  to a target at speed set by rate.       */
/********************************************/

static void make_FormSwep(FormSwep *p)
{
    p->poleCoeffs[0] = p->poleCoeffs[1] = FL(0.0);
    p->gain          = FL(1.0);
    p->freq          = p->reson         = FL(0.0);
    p->currentGain   = FL(1.0);
    p->currentFreq   = p->currentReson  = FL(0.0);
    p->targetGain    = FL(1.0);
    p->targetFreq    = p->targetReson   = FL(0.0);
    p->deltaGain     = FL(0.0);
    p->deltaFreq     = p->deltaReson    = FL(0.0);
    p->sweepState    = FL(0.0);
    p->sweepRate     = FL(0.002);
    p->dirty         = 0;
    p->outputs[0]    = p->outputs[1] = FL(0.0);
}

/* void FormSwep_setFreqAndReson(FormSwep *p, MYFLT aFreq, MYFLT aReson) */
/* { */
/*     p->dirty = 0; */
/*     p->reson = p->currentReson = aReson; */
/*     p->freq = p->currentFreq = aFreq; */
/*     p->poleCoeffs[1] = - (aReson * aReson); */
/*     p->poleCoeffs[0] = 2.0*aReson*(MYFLT)cos((double)(twopi*aFreq/esr)); */
/* } */

void FormSwep_setStates(FormSwep *p, MYFLT aFreq, MYFLT aReson, MYFLT aGain)
{
    p->dirty = 0;
    p->freq  = p->targetFreq  = p->currentFreq  = aFreq;
    p->reson = p->targetReson = p->currentReson = aReson;
    p->gain  = p->targetGain  = p->currentGain  = aGain;
}

void FormSwep_setTargets(FormSwep *p, MYFLT aFreq, MYFLT aReson, MYFLT aGain)
{
    p->dirty = 1;
    p->targetFreq  = aFreq;
    p->targetReson = aReson;
    p->targetGain  = aGain;
    p->deltaFreq   = aFreq - p->currentFreq;
    p->deltaReson  = aReson - p->currentReson;
    p->deltaGain   = aGain - p->currentGain;
    p->sweepState  = FL(0.0);
}

MYFLT FormSwep_tick(CSOUND *csound,
                    FormSwep *p, MYFLT sample) /* Perform Filter Operation */
{
    MYFLT temp;

    if (p->dirty) {
      p->sweepState += p->sweepRate;
      if (p->sweepState>= FL(1.0)) {
        p->sweepState   = FL(1.0);
        p->dirty        = 0;
        p->currentReson = p->reson = p->targetReson;
        p->currentFreq  = p->freq  = p->targetFreq;
        p->currentGain  = p->gain  = p->targetGain;
      }
      else {
        p->currentReson = p->reson + (p->deltaReson * p->sweepState);
        p->currentFreq  = p->freq + (p->deltaFreq * p->sweepState);
        p->currentGain  = p->gain + (p->deltaGain * p->sweepState);
      }
      p->poleCoeffs[1] = - (p->currentReson * p->currentReson);
      p->poleCoeffs[0] = FL(2.0) * p->currentReson *
        COS(csound->tpidsr * p->currentFreq);
    }

    temp = p->currentGain * sample;
    temp += p->poleCoeffs[0] * p->outputs[0];
    temp += p->poleCoeffs[1] * p->outputs[1];
    p->outputs[1] = p->outputs[0];
    p->outputs[0] = temp;
    return temp;
}

static MYFLT Samp_tick(Wave *p)
{
    int32    temp, temp1;
    MYFLT   temp_time, alpha;
    MYFLT   lastOutput;

    p->time += p->rate;                  /*  Update current time    */
    while (p->time >= p->wave->flen)     /*  Check for end of sound */
      p->time -= p->wave->flen;          /*  loop back to beginning */
    while (p->time < FL(0.0))            /*  Check for end of sound */
      p->time += p->wave->flen;          /*  loop back to beginning */

    temp_time = p->time;

    if (p->phase != FL(0.0)) {
      temp_time += p->phase;             /*  Add phase offset       */
      while (temp_time >= p->wave->flen) /*  Check for end of sound */
        temp_time -= p->wave->flen;      /*  loop back to beginning */
      while (temp_time < FL(0.0))        /*  Check for end of sound */
        temp_time += p->wave->flen;      /*  loop back to beginning */
    }

    temp = (int32) temp_time;    /*  Integer part of time address    */
    temp1 = temp + 1;
    if (UNLIKELY(temp1==(int32_t)p->wave->flen)) temp1 = 0; /* Wrap!! */
    /*  fractional part of time address */
    alpha = temp_time - (MYFLT)temp;
    lastOutput = p->wave->ftable[temp];  /* Do linear interpolation */
    /* same as alpha*data[temp+1] + (1-alpha)data[temp] */
    lastOutput += (alpha * (p->wave->ftable[temp1] - lastOutput));
    /* End of vibrato tick */
    return lastOutput;
}

int32_t Moog1set(CSOUND *csound, MOOG1 *p)
{
    FUNC        *ftp;
    MYFLT       tempCoeffs[2] = {FL(0.0),-FL(1.0)};

    make_ADSR(&p->adsr);
    make_OnePole(&p->filter);
    make_TwoZero(&p->twozeroes[0]);
    TwoZero_setZeroCoeffs(&p->twozeroes[0], tempCoeffs);
    make_TwoZero(&p->twozeroes[1]);
    TwoZero_setZeroCoeffs(&p->twozeroes[1], tempCoeffs);
    make_FormSwep(&p->filters[0]);
    make_FormSwep(&p->filters[1]);

    if (LIKELY((ftp = csound->FTnp2Finde(csound, p->iatt)) != NULL))
      p->attk.wave = ftp; /* mandpluk */
    else return NOTOK;
    if (LIKELY((ftp = csound->FTnp2Finde(csound, p->ifn )) != NULL))
      p->loop.wave = ftp; /* impuls20 */
    else return NOTOK;
    if (LIKELY((ftp = csound->FTnp2Finde(csound, p->ivfn)) != NULL))
      p->vibr.wave = ftp; /* sinewave */
    else return NOTOK;
    p->attk.time = p->attk.phase = FL(0.0);
    p->loop.time = p->loop.phase = FL(0.0);
    p->vibr.time = p->vibr.phase = FL(0.0);
    p->oldfilterQ = p->oldfilterRate = FL(0.0);
    ADSR_setAllTimes(csound, &p->adsr, FL(0.001), FL(1.5), FL(0.6), FL(0.250));
    ADSR_setAll(csound, &p->adsr, FL(0.05), FL(0.00003), FL(0.6), FL(0.0002));
    ADSR_keyOn(&p->adsr);
    return OK;
}

int32_t Moog1(CSOUND *csound, MOOG1 *p)
{
    MYFLT       amp = *p->amp * AMP_RSCALE; /* Normalised */
    MYFLT       *ar = p->ar;
    uint32_t    offset = p->h.insdshead->ksmps_offset;
    uint32_t    early  = p->h.insdshead->ksmps_no_end;
    uint32_t    n, nsmps = CS_KSMPS;
    MYFLT       temp;
    MYFLT       vib = *p->vibAmt;

    p->baseFreq = *p->frequency;
    p->attk.rate = p->baseFreq * FL(0.01) * p->attk.wave->flen * csound->onedsr;
    p->loop.rate = p->baseFreq            * p->loop.wave->flen * csound->onedsr;
    p->attackGain = amp * FL(0.5);
    p->loopGain = amp;
    if (*p->filterQ != p->oldfilterQ) {
      p->oldfilterQ = *p->filterQ;
      temp = p->oldfilterQ + FL(0.05);
      FormSwep_setStates(&p->filters[0], FL(2000.0), temp,
                         FL(2.0) * (FL(1.0) - temp));
      FormSwep_setStates(&p->filters[1], FL(2000.0), temp,
                         FL(2.0) * (FL(1.0) - temp));
      temp = p->oldfilterQ + FL(0.099);
      FormSwep_setTargets(&p->filters[0],   FL(0.0), temp,
                          FL(2.0) * (FL(1.0) - temp));
      FormSwep_setTargets(&p->filters[1],   FL(0.0), temp,
                          FL(2.0) * (FL(1.0) - temp));
    }
    if (*p->filterRate != p->oldfilterRate) {
      p->oldfilterRate = *p->filterRate;
      p->filters[0].sweepRate = p->oldfilterRate * RATE_NORM;
      p->filters[1].sweepRate = p->oldfilterRate * RATE_NORM;
    }
    p->vibr.rate = *p->vibf * p->vibr.wave->flen * csound->onedsr;

    if (UNLIKELY(offset)) memset(ar, '\0', offset*sizeof(MYFLT));
    if (UNLIKELY(early)) {
      nsmps -= early;
      memset(&ar[nsmps], '\0', early*sizeof(MYFLT));
    }
    for (n = offset; n<nsmps; n++) {
      MYFLT     temp;
      MYFLT     output;
      int32     itemp;
      MYFLT     temp_time, alpha;

      if (vib != FL(0.0)) {
        temp = vib * Samp_tick(&p->vibr);
        p->loop.rate = p->baseFreq * (FL(1.0) + temp) *
                       (MYFLT)(p->loop.wave->flen) * csound->onedsr;
      }

      p->attk.time += p->attk.rate;           /*  Update current time    */
#ifdef DEBUG
      csound->Message(csound, "Attack_time=%f\tAttack_rate=%f\n",
                              p->attk.time, p->attk.rate);
#endif
      temp_time = p->attk.time;
      if (p->attk.time >= (MYFLT)p->attk.wave->flen)
        output = FL(0.0);                                    /* One shot */
      else {
        itemp = (int32) temp_time;   /*  Integer part of time address    */
                                     /*  fractional part of time address */
        alpha = temp_time - (MYFLT)itemp;
#ifdef DEBUG
        csound->Message(csound, "Attack: (%d, %d), alpha=%f\t",
                                itemp, itemp+1, alpha);
#endif
        output = p->attk.wave->ftable[itemp]; /* Do linear interpolation */
                  /*  same as alpha*data[itemp+1] + (1-alpha)data[itemp] */
#ifdef DEBUG
        csound->Message(csound, "->%f+\n", output);
#endif
        output += (alpha * (p->attk.wave->ftable[itemp+1] - output));
        output *= p->attackGain;
                                                   /* End of attack tick */
      }
#ifdef DEBUG
      csound->Message(csound, "After Attack: %f\n", output);
#endif
      output += p->loopGain * Samp_tick(&p->loop);
#ifdef DEBUG
      csound->Message(csound, "Before OnePole: %f\n", output);
#endif
      output = OnePole_tick(&p->filter, output);
#ifdef DEBUG
      csound->Message(csound, "After OnePole: %f\n", output);
#endif
      output *= ADSR_tick(&p->adsr);
#ifdef DEBUG
      csound->Message(csound, "Sampler_tick: %f\n", output);
#endif
      output = TwoZero_tick(&p->twozeroes[0], output);
#ifdef DEBUG
      csound->Message(csound, "TwoZero0_tick: %f\n", output);
#endif
      output = FormSwep_tick(csound, &p->filters[0], output);
#ifdef DEBUG
      csound->Message(csound, "Filters0_tick: %f\n", output);
#endif
      output = TwoZero_tick(&p->twozeroes[1], output);
#ifdef DEBUG
      csound->Message(csound, "TwoZero1_tick: %f\n", output);
#endif
      output = FormSwep_tick(csound, &p->filters[1], output);
#ifdef DEBUG
      csound->Message(csound, "Filter2_tick: %f\n", output);
#endif
      ar[n] = output*AMP_SCALE*FL(8.0);
    }
    return OK;
}