1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
|
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms of the
* Common Development and Distribution License (the "License").
* You may not use this file except in compliance with the License.
*
* You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing permissions
* and limitations under the License.
*
* When distributing Covered Code, include this CDDL HEADER in each
* file and include the License file at usr/src/OPENSOLARIS.LICENSE.
* If applicable, add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your own identifying
* information: Portions Copyright [yyyy] [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2008 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
#pragma ident "%Z%%M% %I% %E% SMI"
/*
* Given several files containing CTF data, merge and uniquify that data into
* a single CTF section in an output file.
*
* Merges can proceed independently. As such, we perform the merges in parallel
* using a worker thread model. A given glob of CTF data (either all of the CTF
* data from a single input file, or the result of one or more merges) can only
* be involved in a single merge at any given time, so the process decreases in
* parallelism, especially towards the end, as more and more files are
* consolidated, finally resulting in a single merge of two large CTF graphs.
* Unfortunately, the last merge is also the slowest, as the two graphs being
* merged are each the product of merges of half of the input files.
*
* The algorithm consists of two phases, described in detail below. The first
* phase entails the merging of CTF data in groups of eight. The second phase
* takes the results of Phase I, and merges them two at a time. This disparity
* is due to an observation that the merge time increases at least quadratically
* with the size of the CTF data being merged. As such, merges of CTF graphs
* newly read from input files are much faster than merges of CTF graphs that
* are themselves the results of prior merges.
*
* A further complication is the need to ensure the repeatability of CTF merges.
* That is, a merge should produce the same output every time, given the same
* input. In both phases, this consistency requirement is met by imposing an
* ordering on the merge process, thus ensuring that a given set of input files
* are merged in the same order every time.
*
* Phase I
*
* The main thread reads the input files one by one, transforming the CTF
* data they contain into tdata structures. When a given file has been read
* and parsed, it is placed on the work queue for retrieval by worker threads.
*
* Central to Phase I is the Work In Progress (wip) array, which is used to
* merge batches of files in a predictable order. Files are read by the main
* thread, and are merged into wip array elements in round-robin order. When
* the number of files merged into a given array slot equals the batch size,
* the merged CTF graph in that array is added to the done slot in order by
* array slot.
*
* For example, consider a case where we have five input files, a batch size
* of two, a wip array size of two, and two worker threads (T1 and T2).
*
* 1. The wip array elements are assigned initial batch numbers 0 and 1.
* 2. T1 reads an input file from the input queue (wq_queue). This is the
* first input file, so it is placed into wip[0]. The second file is
* similarly read and placed into wip[1]. The wip array slots now contain
* one file each (wip_nmerged == 1).
* 3. T1 reads the third input file, which it merges into wip[0]. The
* number of files in wip[0] is equal to the batch size.
* 4. T2 reads the fourth input file, which it merges into wip[1]. wip[1]
* is now full too.
* 5. T2 attempts to place the contents of wip[1] on the done queue
* (wq_done_queue), but it can't, since the batch ID for wip[1] is 1.
* Batch 0 needs to be on the done queue before batch 1 can be added, so
* T2 blocks on wip[1]'s cv.
* 6. T1 attempts to place the contents of wip[0] on the done queue, and
* succeeds, updating wq_lastdonebatch to 0. It clears wip[0], and sets
* its batch ID to 2. T1 then signals wip[1]'s cv to awaken T2.
* 7. T2 wakes up, notices that wq_lastdonebatch is 0, which means that
* batch 1 can now be added. It adds wip[1] to the done queue, clears
* wip[1], and sets its batch ID to 3. It signals wip[0]'s cv, and
* restarts.
*
* The above process continues until all input files have been consumed. At
* this point, a pair of barriers are used to allow a single thread to move
* any partial batches from the wip array to the done array in batch ID order.
* When this is complete, wq_done_queue is moved to wq_queue, and Phase II
* begins.
*
* Locking Semantics (Phase I)
*
* The input queue (wq_queue) and the done queue (wq_done_queue) are
* protected by separate mutexes - wq_queue_lock and wq_done_queue. wip
* array slots are protected by their own mutexes, which must be grabbed
* before releasing the input queue lock. The wip array lock is dropped
* when the thread restarts the loop. If the array slot was full, the
* array lock will be held while the slot contents are added to the done
* queue. The done queue lock is used to protect the wip slot cv's.
*
* The pow number is protected by the queue lock. The master batch ID
* and last completed batch (wq_lastdonebatch) counters are protected *in
* Phase I* by the done queue lock.
*
* Phase II
*
* When Phase II begins, the queue consists of the merged batches from the
* first phase. Assume we have five batches:
*
* Q: a b c d e
*
* Using the same batch ID mechanism we used in Phase I, but without the wip
* array, worker threads remove two entries at a time from the beginning of
* the queue. These two entries are merged, and are added back to the tail
* of the queue, as follows:
*
* Q: a b c d e # start
* Q: c d e ab # a, b removed, merged, added to end
* Q: e ab cd # c, d removed, merged, added to end
* Q: cd eab # e, ab removed, merged, added to end
* Q: cdeab # cd, eab removed, merged, added to end
*
* When one entry remains on the queue, with no merges outstanding, Phase II
* finishes. We pre-determine the stopping point by pre-calculating the
* number of nodes that will appear on the list. In the example above, the
* number (wq_ninqueue) is 9. When ninqueue is 1, we conclude Phase II by
* signaling the main thread via wq_done_cv.
*
* Locking Semantics (Phase II)
*
* The queue (wq_queue), ninqueue, and the master batch ID and last
* completed batch counters are protected by wq_queue_lock. The done
* queue and corresponding lock are unused in Phase II as is the wip array.
*
* Uniquification
*
* We want the CTF data that goes into a given module to be as small as
* possible. For example, we don't want it to contain any type data that may
* be present in another common module. As such, after creating the master
* tdata_t for a given module, we can, if requested by the user, uniquify it
* against the tdata_t from another module (genunix in the case of the SunOS
* kernel). We perform a merge between the tdata_t for this module and the
* tdata_t from genunix. Nodes found in this module that are not present in
* genunix are added to a third tdata_t - the uniquified tdata_t.
*
* Additive Merges
*
* In some cases, for example if we are issuing a new version of a common
* module in a patch, we need to make sure that the CTF data already present
* in that module does not change. Changes to this data would void the CTF
* data in any module that uniquified against the common module. To preserve
* the existing data, we can perform what is known as an additive merge. In
* this case, a final uniquification is performed against the CTF data in the
* previous version of the module. The result will be the placement of new
* and changed data after the existing data, thus preserving the existing type
* ID space.
*
* Saving the result
*
* When the merges are complete, the resulting tdata_t is placed into the
* output file, replacing the .SUNW_ctf section (if any) already in that file.
*
* The person who changes the merging thread code in this file without updating
* this comment will not live to see the stock hit five.
*/
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <pthread.h>
#include <assert.h>
#if defined(sun)
#include <synch.h>
#endif
#include <signal.h>
#include <libgen.h>
#include <string.h>
#include <errno.h>
#if defined(sun)
#include <alloca.h>
#endif
#include <sys/param.h>
#include <sys/types.h>
#include <sys/mman.h>
#if defined(sun)
#include <sys/sysconf.h>
#endif
#include "ctf_headers.h"
#include "ctftools.h"
#include "ctfmerge.h"
#include "traverse.h"
#include "memory.h"
#include "fifo.h"
#include "barrier.h"
#pragma init(bigheap)
#define MERGE_PHASE1_BATCH_SIZE 8
#define MERGE_PHASE1_MAX_SLOTS 5
#define MERGE_INPUT_THROTTLE_LEN 10
const char *progname;
static char *outfile = NULL;
static char *tmpname = NULL;
static int dynsym;
int debug_level = DEBUG_LEVEL;
static size_t maxpgsize = 0x400000;
void
usage(void)
{
(void) fprintf(stderr,
"Usage: %s [-fgstv] -l label | -L labelenv -o outfile file ...\n"
" %s [-fgstv] -l label | -L labelenv -o outfile -d uniqfile\n"
" %*s [-g] [-D uniqlabel] file ...\n"
" %s [-fgstv] -l label | -L labelenv -o outfile -w withfile "
"file ...\n"
" %s [-g] -c srcfile destfile\n"
"\n"
" Note: if -L labelenv is specified and labelenv is not set in\n"
" the environment, a default value is used.\n",
progname, progname, (int)strlen(progname), " ",
progname, progname);
}
#if defined(sun)
static void
bigheap(void)
{
size_t big, *size;
int sizes;
struct memcntl_mha mha;
/*
* First, get the available pagesizes.
*/
if ((sizes = getpagesizes(NULL, 0)) == -1)
return;
if (sizes == 1 || (size = alloca(sizeof (size_t) * sizes)) == NULL)
return;
if (getpagesizes(size, sizes) == -1)
return;
while (size[sizes - 1] > maxpgsize)
sizes--;
/* set big to the largest allowed page size */
big = size[sizes - 1];
if (big & (big - 1)) {
/*
* The largest page size is not a power of two for some
* inexplicable reason; return.
*/
return;
}
/*
* Now, align our break to the largest page size.
*/
if (brk((void *)((((uintptr_t)sbrk(0) - 1) & ~(big - 1)) + big)) != 0)
return;
/*
* set the preferred page size for the heap
*/
mha.mha_cmd = MHA_MAPSIZE_BSSBRK;
mha.mha_flags = 0;
mha.mha_pagesize = big;
(void) memcntl(NULL, 0, MC_HAT_ADVISE, (caddr_t)&mha, 0, 0);
}
#endif
static void
finalize_phase_one(workqueue_t *wq)
{
int startslot, i;
/*
* wip slots are cleared out only when maxbatchsz td's have been merged
* into them. We're not guaranteed that the number of files we're
* merging is a multiple of maxbatchsz, so there will be some partial
* groups in the wip array. Move them to the done queue in batch ID
* order, starting with the slot containing the next batch that would
* have been placed on the done queue, followed by the others.
* One thread will be doing this while the others wait at the barrier
* back in worker_thread(), so we don't need to worry about pesky things
* like locks.
*/
for (startslot = -1, i = 0; i < wq->wq_nwipslots; i++) {
if (wq->wq_wip[i].wip_batchid == wq->wq_lastdonebatch + 1) {
startslot = i;
break;
}
}
assert(startslot != -1);
for (i = startslot; i < startslot + wq->wq_nwipslots; i++) {
int slotnum = i % wq->wq_nwipslots;
wip_t *wipslot = &wq->wq_wip[slotnum];
if (wipslot->wip_td != NULL) {
debug(2, "clearing slot %d (%d) (saving %d)\n",
slotnum, i, wipslot->wip_nmerged);
} else
debug(2, "clearing slot %d (%d)\n", slotnum, i);
if (wipslot->wip_td != NULL) {
fifo_add(wq->wq_donequeue, wipslot->wip_td);
wq->wq_wip[slotnum].wip_td = NULL;
}
}
wq->wq_lastdonebatch = wq->wq_next_batchid++;
debug(2, "phase one done: donequeue has %d items\n",
fifo_len(wq->wq_donequeue));
}
static void
init_phase_two(workqueue_t *wq)
{
int num;
/*
* We're going to continually merge the first two entries on the queue,
* placing the result on the end, until there's nothing left to merge.
* At that point, everything will have been merged into one. The
* initial value of ninqueue needs to be equal to the total number of
* entries that will show up on the queue, both at the start of the
* phase and as generated by merges during the phase.
*/
wq->wq_ninqueue = num = fifo_len(wq->wq_donequeue);
while (num != 1) {
wq->wq_ninqueue += num / 2;
num = num / 2 + num % 2;
}
/*
* Move the done queue to the work queue. We won't be using the done
* queue in phase 2.
*/
assert(fifo_len(wq->wq_queue) == 0);
fifo_free(wq->wq_queue, NULL);
wq->wq_queue = wq->wq_donequeue;
}
static void
wip_save_work(workqueue_t *wq, wip_t *slot, int slotnum)
{
pthread_mutex_lock(&wq->wq_donequeue_lock);
while (wq->wq_lastdonebatch + 1 < slot->wip_batchid)
pthread_cond_wait(&slot->wip_cv, &wq->wq_donequeue_lock);
assert(wq->wq_lastdonebatch + 1 == slot->wip_batchid);
fifo_add(wq->wq_donequeue, slot->wip_td);
wq->wq_lastdonebatch++;
pthread_cond_signal(&wq->wq_wip[(slotnum + 1) %
wq->wq_nwipslots].wip_cv);
/* reset the slot for next use */
slot->wip_td = NULL;
slot->wip_batchid = wq->wq_next_batchid++;
pthread_mutex_unlock(&wq->wq_donequeue_lock);
}
static void
wip_add_work(wip_t *slot, tdata_t *pow)
{
if (slot->wip_td == NULL) {
slot->wip_td = pow;
slot->wip_nmerged = 1;
} else {
debug(2, "%d: merging %p into %p\n", pthread_self(),
(void *)pow, (void *)slot->wip_td);
merge_into_master(pow, slot->wip_td, NULL, 0);
tdata_free(pow);
slot->wip_nmerged++;
}
}
static void
worker_runphase1(workqueue_t *wq)
{
wip_t *wipslot;
tdata_t *pow;
int wipslotnum, pownum;
for (;;) {
pthread_mutex_lock(&wq->wq_queue_lock);
while (fifo_empty(wq->wq_queue)) {
if (wq->wq_nomorefiles == 1) {
pthread_cond_broadcast(&wq->wq_work_avail);
pthread_mutex_unlock(&wq->wq_queue_lock);
/* on to phase 2 ... */
return;
}
pthread_cond_wait(&wq->wq_work_avail,
&wq->wq_queue_lock);
}
/* there's work to be done! */
pow = fifo_remove(wq->wq_queue);
pownum = wq->wq_nextpownum++;
pthread_cond_broadcast(&wq->wq_work_removed);
assert(pow != NULL);
/* merge it into the right slot */
wipslotnum = pownum % wq->wq_nwipslots;
wipslot = &wq->wq_wip[wipslotnum];
pthread_mutex_lock(&wipslot->wip_lock);
pthread_mutex_unlock(&wq->wq_queue_lock);
wip_add_work(wipslot, pow);
if (wipslot->wip_nmerged == wq->wq_maxbatchsz)
wip_save_work(wq, wipslot, wipslotnum);
pthread_mutex_unlock(&wipslot->wip_lock);
}
}
static void
worker_runphase2(workqueue_t *wq)
{
tdata_t *pow1, *pow2;
int batchid;
for (;;) {
pthread_mutex_lock(&wq->wq_queue_lock);
if (wq->wq_ninqueue == 1) {
pthread_cond_broadcast(&wq->wq_work_avail);
pthread_mutex_unlock(&wq->wq_queue_lock);
debug(2, "%d: entering p2 completion barrier\n",
pthread_self());
if (barrier_wait(&wq->wq_bar1)) {
pthread_mutex_lock(&wq->wq_queue_lock);
wq->wq_alldone = 1;
pthread_cond_signal(&wq->wq_alldone_cv);
pthread_mutex_unlock(&wq->wq_queue_lock);
}
return;
}
if (fifo_len(wq->wq_queue) < 2) {
pthread_cond_wait(&wq->wq_work_avail,
&wq->wq_queue_lock);
pthread_mutex_unlock(&wq->wq_queue_lock);
continue;
}
/* there's work to be done! */
pow1 = fifo_remove(wq->wq_queue);
pow2 = fifo_remove(wq->wq_queue);
wq->wq_ninqueue -= 2;
batchid = wq->wq_next_batchid++;
pthread_mutex_unlock(&wq->wq_queue_lock);
debug(2, "%d: merging %p into %p\n", pthread_self(),
(void *)pow1, (void *)pow2);
merge_into_master(pow1, pow2, NULL, 0);
tdata_free(pow1);
/*
* merging is complete. place at the tail of the queue in
* proper order.
*/
pthread_mutex_lock(&wq->wq_queue_lock);
while (wq->wq_lastdonebatch + 1 != batchid) {
pthread_cond_wait(&wq->wq_done_cv,
&wq->wq_queue_lock);
}
wq->wq_lastdonebatch = batchid;
fifo_add(wq->wq_queue, pow2);
debug(2, "%d: added %p to queue, len now %d, ninqueue %d\n",
pthread_self(), (void *)pow2, fifo_len(wq->wq_queue),
wq->wq_ninqueue);
pthread_cond_broadcast(&wq->wq_done_cv);
pthread_cond_signal(&wq->wq_work_avail);
pthread_mutex_unlock(&wq->wq_queue_lock);
}
}
/*
* Main loop for worker threads.
*/
static void
worker_thread(workqueue_t *wq)
{
worker_runphase1(wq);
debug(2, "%d: entering first barrier\n", pthread_self());
if (barrier_wait(&wq->wq_bar1)) {
debug(2, "%d: doing work in first barrier\n", pthread_self());
finalize_phase_one(wq);
init_phase_two(wq);
debug(2, "%d: ninqueue is %d, %d on queue\n", pthread_self(),
wq->wq_ninqueue, fifo_len(wq->wq_queue));
}
debug(2, "%d: entering second barrier\n", pthread_self());
(void) barrier_wait(&wq->wq_bar2);
debug(2, "%d: phase 1 complete\n", pthread_self());
worker_runphase2(wq);
}
/*
* Pass a tdata_t tree, built from an input file, off to the work queue for
* consumption by worker threads.
*/
static int
merge_ctf_cb(tdata_t *td, char *name, void *arg)
{
workqueue_t *wq = arg;
debug(3, "Adding tdata %p for processing\n", (void *)td);
pthread_mutex_lock(&wq->wq_queue_lock);
while (fifo_len(wq->wq_queue) > wq->wq_ithrottle) {
debug(2, "Throttling input (len = %d, throttle = %d)\n",
fifo_len(wq->wq_queue), wq->wq_ithrottle);
pthread_cond_wait(&wq->wq_work_removed, &wq->wq_queue_lock);
}
fifo_add(wq->wq_queue, td);
debug(1, "Thread %d announcing %s\n", pthread_self(), name);
pthread_cond_broadcast(&wq->wq_work_avail);
pthread_mutex_unlock(&wq->wq_queue_lock);
return (1);
}
/*
* This program is intended to be invoked from a Makefile, as part of the build.
* As such, in the event of a failure or user-initiated interrupt (^C), we need
* to ensure that a subsequent re-make will cause ctfmerge to be executed again.
* Unfortunately, ctfmerge will usually be invoked directly after (and as part
* of the same Makefile rule as) a link, and will operate on the linked file
* in place. If we merely exit upon receipt of a SIGINT, a subsequent make
* will notice that the *linked* file is newer than the object files, and thus
* will not reinvoke ctfmerge. The only way to ensure that a subsequent make
* reinvokes ctfmerge, is to remove the file to which we are adding CTF
* data (confusingly named the output file). This means that the link will need
* to happen again, but links are generally fast, and we can't allow the merge
* to be skipped.
*
* Another possibility would be to block SIGINT entirely - to always run to
* completion. The run time of ctfmerge can, however, be measured in minutes
* in some cases, so this is not a valid option.
*/
static void
handle_sig(int sig)
{
terminate("Caught signal %d - exiting\n", sig);
}
static void
terminate_cleanup(void)
{
int dounlink = getenv("CTFMERGE_TERMINATE_NO_UNLINK") ? 0 : 1;
if (tmpname != NULL && dounlink)
unlink(tmpname);
if (outfile == NULL)
return;
#if !defined(__FreeBSD__)
if (dounlink) {
fprintf(stderr, "Removing %s\n", outfile);
unlink(outfile);
}
#endif
}
static void
copy_ctf_data(char *srcfile, char *destfile, int keep_stabs)
{
tdata_t *srctd;
if (read_ctf(&srcfile, 1, NULL, read_ctf_save_cb, &srctd, 1) == 0)
terminate("No CTF data found in source file %s\n", srcfile);
tmpname = mktmpname(destfile, ".ctf");
write_ctf(srctd, destfile, tmpname, CTF_COMPRESS | CTF_SWAP_BYTES | keep_stabs);
if (rename(tmpname, destfile) != 0) {
terminate("Couldn't rename temp file %s to %s", tmpname,
destfile);
}
free(tmpname);
tdata_free(srctd);
}
static void
wq_init(workqueue_t *wq, int nfiles)
{
int throttle, nslots, i;
if (getenv("CTFMERGE_MAX_SLOTS"))
nslots = atoi(getenv("CTFMERGE_MAX_SLOTS"));
else
nslots = MERGE_PHASE1_MAX_SLOTS;
if (getenv("CTFMERGE_PHASE1_BATCH_SIZE"))
wq->wq_maxbatchsz = atoi(getenv("CTFMERGE_PHASE1_BATCH_SIZE"));
else
wq->wq_maxbatchsz = MERGE_PHASE1_BATCH_SIZE;
nslots = MIN(nslots, (nfiles + wq->wq_maxbatchsz - 1) /
wq->wq_maxbatchsz);
wq->wq_wip = xcalloc(sizeof (wip_t) * nslots);
wq->wq_nwipslots = nslots;
wq->wq_nthreads = MIN(sysconf(_SC_NPROCESSORS_ONLN) * 3 / 2, nslots);
wq->wq_thread = xmalloc(sizeof (pthread_t) * wq->wq_nthreads);
if (getenv("CTFMERGE_INPUT_THROTTLE"))
throttle = atoi(getenv("CTFMERGE_INPUT_THROTTLE"));
else
throttle = MERGE_INPUT_THROTTLE_LEN;
wq->wq_ithrottle = throttle * wq->wq_nthreads;
debug(1, "Using %d slots, %d threads\n", wq->wq_nwipslots,
wq->wq_nthreads);
wq->wq_next_batchid = 0;
for (i = 0; i < nslots; i++) {
pthread_mutex_init(&wq->wq_wip[i].wip_lock, NULL);
wq->wq_wip[i].wip_batchid = wq->wq_next_batchid++;
}
pthread_mutex_init(&wq->wq_queue_lock, NULL);
wq->wq_queue = fifo_new();
pthread_cond_init(&wq->wq_work_avail, NULL);
pthread_cond_init(&wq->wq_work_removed, NULL);
wq->wq_ninqueue = nfiles;
wq->wq_nextpownum = 0;
pthread_mutex_init(&wq->wq_donequeue_lock, NULL);
wq->wq_donequeue = fifo_new();
wq->wq_lastdonebatch = -1;
pthread_cond_init(&wq->wq_done_cv, NULL);
pthread_cond_init(&wq->wq_alldone_cv, NULL);
wq->wq_alldone = 0;
barrier_init(&wq->wq_bar1, wq->wq_nthreads);
barrier_init(&wq->wq_bar2, wq->wq_nthreads);
wq->wq_nomorefiles = 0;
}
static void
start_threads(workqueue_t *wq)
{
sigset_t sets;
int i;
sigemptyset(&sets);
sigaddset(&sets, SIGINT);
sigaddset(&sets, SIGQUIT);
sigaddset(&sets, SIGTERM);
pthread_sigmask(SIG_BLOCK, &sets, NULL);
for (i = 0; i < wq->wq_nthreads; i++) {
pthread_create(&wq->wq_thread[i], NULL,
(void *(*)(void *))worker_thread, wq);
}
#if defined(sun)
sigset(SIGINT, handle_sig);
sigset(SIGQUIT, handle_sig);
sigset(SIGTERM, handle_sig);
#else
signal(SIGINT, handle_sig);
signal(SIGQUIT, handle_sig);
signal(SIGTERM, handle_sig);
#endif
pthread_sigmask(SIG_UNBLOCK, &sets, NULL);
}
static void
join_threads(workqueue_t *wq)
{
int i;
for (i = 0; i < wq->wq_nthreads; i++) {
pthread_join(wq->wq_thread[i], NULL);
}
}
static int
strcompare(const void *p1, const void *p2)
{
char *s1 = *((char **)p1);
char *s2 = *((char **)p2);
return (strcmp(s1, s2));
}
/*
* Core work queue structure; passed to worker threads on thread creation
* as the main point of coordination. Allocate as a static structure; we
* could have put this into a local variable in main, but passing a pointer
* into your stack to another thread is fragile at best and leads to some
* hard-to-debug failure modes.
*/
static workqueue_t wq;
int
main(int argc, char **argv)
{
tdata_t *mstrtd, *savetd;
char *uniqfile = NULL, *uniqlabel = NULL;
char *withfile = NULL;
char *label = NULL;
char **ifiles, **tifiles;
int verbose = 0, docopy = 0;
int write_fuzzy_match = 0;
int keep_stabs = 0;
int require_ctf = 0;
int nifiles, nielems;
int c, i, idx, tidx, err;
progname = basename(argv[0]);
if (getenv("CTFMERGE_DEBUG_LEVEL"))
debug_level = atoi(getenv("CTFMERGE_DEBUG_LEVEL"));
err = 0;
while ((c = getopt(argc, argv, ":cd:D:fgl:L:o:tvw:s")) != EOF) {
switch (c) {
case 'c':
docopy = 1;
break;
case 'd':
/* Uniquify against `uniqfile' */
uniqfile = optarg;
break;
case 'D':
/* Uniquify against label `uniqlabel' in `uniqfile' */
uniqlabel = optarg;
break;
case 'f':
write_fuzzy_match = CTF_FUZZY_MATCH;
break;
case 'g':
keep_stabs = CTF_KEEP_STABS;
break;
case 'l':
/* Label merged types with `label' */
label = optarg;
break;
case 'L':
/* Label merged types with getenv(`label`) */
if ((label = getenv(optarg)) == NULL)
label = CTF_DEFAULT_LABEL;
break;
case 'o':
/* Place merged types in CTF section in `outfile' */
outfile = optarg;
break;
case 't':
/* Insist *all* object files built from C have CTF */
require_ctf = 1;
break;
case 'v':
/* More debugging information */
verbose = 1;
break;
case 'w':
/* Additive merge with data from `withfile' */
withfile = optarg;
break;
case 's':
/* use the dynsym rather than the symtab */
dynsym = CTF_USE_DYNSYM;
break;
default:
usage();
exit(2);
}
}
/* Validate arguments */
if (docopy) {
if (uniqfile != NULL || uniqlabel != NULL || label != NULL ||
outfile != NULL || withfile != NULL || dynsym != 0)
err++;
if (argc - optind != 2)
err++;
} else {
if (uniqfile != NULL && withfile != NULL)
err++;
if (uniqlabel != NULL && uniqfile == NULL)
err++;
if (outfile == NULL || label == NULL)
err++;
if (argc - optind == 0)
err++;
}
if (err) {
usage();
exit(2);
}
if (getenv("STRIPSTABS_KEEP_STABS") != NULL)
keep_stabs = CTF_KEEP_STABS;
if (uniqfile && access(uniqfile, R_OK) != 0) {
warning("Uniquification file %s couldn't be opened and "
"will be ignored.\n", uniqfile);
uniqfile = NULL;
}
if (withfile && access(withfile, R_OK) != 0) {
warning("With file %s couldn't be opened and will be "
"ignored.\n", withfile);
withfile = NULL;
}
if (outfile && access(outfile, R_OK|W_OK) != 0)
terminate("Cannot open output file %s for r/w", outfile);
/*
* This is ugly, but we don't want to have to have a separate tool
* (yet) just for copying an ELF section with our specific requirements,
* so we shoe-horn a copier into ctfmerge.
*/
if (docopy) {
copy_ctf_data(argv[optind], argv[optind + 1], keep_stabs);
exit(0);
}
set_terminate_cleanup(terminate_cleanup);
/* Sort the input files and strip out duplicates */
nifiles = argc - optind;
ifiles = xmalloc(sizeof (char *) * nifiles);
tifiles = xmalloc(sizeof (char *) * nifiles);
for (i = 0; i < nifiles; i++)
tifiles[i] = argv[optind + i];
qsort(tifiles, nifiles, sizeof (char *), (int (*)())strcompare);
ifiles[0] = tifiles[0];
for (idx = 0, tidx = 1; tidx < nifiles; tidx++) {
if (strcmp(ifiles[idx], tifiles[tidx]) != 0)
ifiles[++idx] = tifiles[tidx];
}
nifiles = idx + 1;
/* Make sure they all exist */
if ((nielems = count_files(ifiles, nifiles)) < 0)
terminate("Some input files were inaccessible\n");
/* Prepare for the merge */
wq_init(&wq, nielems);
start_threads(&wq);
/*
* Start the merge
*
* We're reading everything from each of the object files, so we
* don't need to specify labels.
*/
if (read_ctf(ifiles, nifiles, NULL, merge_ctf_cb,
&wq, require_ctf) == 0) {
/*
* If we're verifying that C files have CTF, it's safe to
* assume that in this case, we're building only from assembly
* inputs.
*/
if (require_ctf)
exit(0);
terminate("No ctf sections found to merge\n");
}
pthread_mutex_lock(&wq.wq_queue_lock);
wq.wq_nomorefiles = 1;
pthread_cond_broadcast(&wq.wq_work_avail);
pthread_mutex_unlock(&wq.wq_queue_lock);
pthread_mutex_lock(&wq.wq_queue_lock);
while (wq.wq_alldone == 0)
pthread_cond_wait(&wq.wq_alldone_cv, &wq.wq_queue_lock);
pthread_mutex_unlock(&wq.wq_queue_lock);
join_threads(&wq);
/*
* All requested files have been merged, with the resulting tree in
* mstrtd. savetd is the tree that will be placed into the output file.
*
* Regardless of whether we're doing a normal uniquification or an
* additive merge, we need a type tree that has been uniquified
* against uniqfile or withfile, as appropriate.
*
* If we're doing a uniquification, we stuff the resulting tree into
* outfile. Otherwise, we add the tree to the tree already in withfile.
*/
assert(fifo_len(wq.wq_queue) == 1);
mstrtd = fifo_remove(wq.wq_queue);
if (verbose || debug_level) {
debug(2, "Statistics for td %p\n", (void *)mstrtd);
iidesc_stats(mstrtd->td_iihash);
}
if (uniqfile != NULL || withfile != NULL) {
char *reffile, *reflabel = NULL;
tdata_t *reftd;
if (uniqfile != NULL) {
reffile = uniqfile;
reflabel = uniqlabel;
} else
reffile = withfile;
if (read_ctf(&reffile, 1, reflabel, read_ctf_save_cb,
&reftd, require_ctf) == 0) {
terminate("No CTF data found in reference file %s\n",
reffile);
}
savetd = tdata_new();
if (CTF_TYPE_ISCHILD(reftd->td_nextid))
terminate("No room for additional types in master\n");
savetd->td_nextid = withfile ? reftd->td_nextid :
CTF_INDEX_TO_TYPE(1, TRUE);
merge_into_master(mstrtd, reftd, savetd, 0);
tdata_label_add(savetd, label, CTF_LABEL_LASTIDX);
if (withfile) {
/*
* savetd holds the new data to be added to the withfile
*/
tdata_t *withtd = reftd;
tdata_merge(withtd, savetd);
savetd = withtd;
} else {
char uniqname[MAXPATHLEN];
labelent_t *parle;
parle = tdata_label_top(reftd);
savetd->td_parlabel = xstrdup(parle->le_name);
strncpy(uniqname, reffile, sizeof (uniqname));
uniqname[MAXPATHLEN - 1] = '\0';
savetd->td_parname = xstrdup(basename(uniqname));
}
} else {
/*
* No post processing. Write the merged tree as-is into the
* output file.
*/
tdata_label_free(mstrtd);
tdata_label_add(mstrtd, label, CTF_LABEL_LASTIDX);
savetd = mstrtd;
}
tmpname = mktmpname(outfile, ".ctf");
write_ctf(savetd, outfile, tmpname,
CTF_COMPRESS | CTF_SWAP_BYTES | write_fuzzy_match | dynsym | keep_stabs);
if (rename(tmpname, outfile) != 0)
terminate("Couldn't rename output temp file %s", tmpname);
free(tmpname);
return (0);
}
|