1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
# partition.rb: segment partitioning functions
# Copyright (c) 2008 by Vincent Fourmond
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details (in the COPYING file).
require 'CTioga/utils'
module CTioga
Version::register_svn_info('$Revision: 792 $', '$Date: 2008-05-23 00:19:31 +0200 (Fri, 23 May 2008) $')
# A module for small convenience functions.
module Utils
# The following code is stolen from SciYAG/lib/utils.rb,
# and is used to partition segments in natural-looking
# subdivisions.
# Our natural way to split decades
NaturalDistances = Dobjects::Dvector[1, 2, 2.5, 5, 10]
# Attempts to partition the given segment in at most _nb_
# segments of equal size. The segments don't necessarily start on
# the edge of the original segment
def self.partition_segment(min, max, nb)
if min > max
return partition_segment(max, min, nb)
elsif min.nan? or max.nan?
return [0] * nb
elsif min == max
return self.partition_segment(min * 0.7, min * 1.3, nb)
end
distance = max - min
min_distance = distance/(nb + 1.0) # Why + 1.0 ? To account
# for the space that could be left on the side.
# The order of magnitude of the distance:
order = min_distance.log10.floor
# A distance which is within [1, 10 [ (but the latter is never reached.
normalized_distance = min_distance * 10**(-order)
final_distance = NaturalDistances.min_gt(normalized_distance) *
10**(order)
# puts "Distance: #{distance} in #{nb} : #{normalized_distance} #{final_distance}"
# We're getting closer now: we found the natural distance between
# ticks.
start = (min/final_distance).ceil * final_distance
retval = []
val = start
while val <= max
retval << val
# I use this to avoid potential cumulative addition
# rounding errors
val = start + final_distance * retval.size
end
return retval
end
# Our natural way to split decades - except that all successive
# element now divide each other.
NaturalDistancesNonLinear = Dobjects::Dvector[1, 2.5, 5, 10]
# A class that handles a "natural distance". Create it by giving
# the initial distance. You can then get its value, lower it,
# increase it, find the first/last element of an interval that is
# a multiple if it
class NaturalDistance
# Creates the biggest 'natural distance' that is smaller
# than _distance_
def initialize(distance)
@order = distance.log10.floor
normalized = distance * 10**(-@order)
@index = 0
for dist in NaturalDistances
if dist > normalized
break
else
@index += 1
end
end
end
# Returns the actual value of the distance
def value
return NaturalDistances[@index] * 10**(@order)
end
# Goes to the natural distance immediately under the current one
def decrease
if @index > 0
@index -= 1
else
@index = NaturalDistances.size - 1
@order -= 1
end
end
# Goes to the natural distance immediately under the current one
def increase
if @index < NaturalDistances.size - 1
@index += 1
else
@index = 0
@order += 1
end
end
# Find the minimum element inside the given interval
# that is a multiple of this distance
def find_minimum(x1, x2)
x1,x2 = x2, x1 if x1 > x2
dist = value
v = (x1/dist).ceil * dist
if v <= x2
return v
else
return false
end
end
# Returns the value of the next decade (ascending)
def next_decade(x)
decade = 10.**(@order + 1)
if @index == 0 # We stop at 0.5 if the increase is 0.5
decade *= 0.5
end
nb = Float((x/decade).ceil)
if nb == x/decade
return (nb + 1)*decade
else
return nb * decade
end
end
# Returns the number of elements to #next_decade
def nb_to_next_decade(x)
dist = value
dec = next_decade(x)
return dec/dist - (x/dist).ceil + 1
end
# Returns a list of all the values corresponding to
# the distance
def to_next_decade(x)
next_decade = next_decade(x)
dist = value
start = (x/dist).ceil * dist
retval = []
while start + retval.size * dist <= next_decade
retval << start + retval.size * dist
end
return retval
end
end
# Attempts to partition the segment image of _min_, _max_
# by the Proc object _to_ into at most _nb_ elements. The
# reverse of the transformation, _from_, has to be provided.
def self.partition_nonlinear(to, from, x1, x2, nb)
x1, x2 = x2, x1 if x1 > x2
if x1.nan? or x2.nan?
return [0] * nb
elsif x1 == x2 # Nothing to do
return self.partition_segment(x1 * 0.7, x2 * 1.3, nb)
end
xdist = x2 - x1
xdist_min = xdist/(nb + 1.0) # Why + 1.0 ? To account
# for the space that could be left on the side.
y1 = to.call(x1)
y2 = to.call(x2)
# Make sure y1 < y2
y1, y2 = y2, y1 if y1 > y2
# We first need to check if the linear partitioning of
# the target segment could be enough:
candidate = self.partition_segment(y1, y2, nb)
candidate_real = candidate.map(&from)
# We inspect the segment: if one of the length deviates from the
# average expected by more than 25%, we drop it
length = []
p candidate_real, xdist_min
0.upto(candidate.size - 2) do |i|
length << (candidate_real[i+1] - candidate_real[i]).abs/(xdist_min)
end
p length
# If everything stays within 25% off, we keep that
if length.min > 0.75 and length.max < 1.7
return candidate
end
# We start with a geometric measure of the distance, that
# will most likely scale better:
ydist = y1 * (y2/y1).abs ** (1/(nb + 1.0))
cur_dist = NaturalDistance.new(ydist)
retval = []
cur_y = y1
# This flag is necessary to avoid infinite loops
last_was_decrease = false
distance_unchanged = 0
last_real_distance = false
while cur_y < y2
candidates = cur_dist.to_next_decade(cur_y)
# We now evaluate the distance in real
real_distance = (from.call(cur_y) - from.call(candidates.last)).abs/
candidates.size
if last_real_distance && (real_distance == last_real_distance)
distance_unchanged += 1
else
distance_unchanged = 0
end
# p [:cur_y=, cur_y, :y2=, y2, :real_distance, real_distance,
# :distance=, cur_dist, :xdist_min, xdist_min,
# :candidates=, *candidates]
if (real_distance > 1.25 * xdist_min) &&
(distance_unchanged < 3)
cur_dist.decrease
last_was_decrease = true
elsif real_distance < 0.75 * xdist_min &&
!last_was_decrease && (distance_unchanged < 3) &&
candidates.last <= 10 * y2
cur_dist.increase
last_was_decrease = false
else
retval += candidates
cur_y = candidates.last
last_was_decrease = false
end
last_real_distance = real_distance
end
# We need to select them so
return retval.select do |y|
y >= y1 and y <= y2
end
end
end
end
|