1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
|
-- Compiler Toolkit: Self-optimizing LL(1) parser combinators
--
-- Author : Manuel M. T. Chakravarty
-- Created: 27 February 99
--
-- Version $Revision: 1.18 $ from $Date: 1999/09/22 09:36:35 $
--
-- Copyright (c) 1999 Manuel M. T. Chakravarty
--
-- This library is free software; you can redistribute it and/or
-- modify it under the terms of the GNU Library General Public
-- License as published by the Free Software Foundation; either
-- version 2 of the License, or (at your option) any later version.
--
-- This library is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-- Library General Public License for more details.
--
--- DESCRIPTION ---------------------------------------------------------------
--
-- This is a reimplementation of Swierstra/Duponcheel's parser combinators.
-- These are deterministic, self-optimizing LL(1) combinators, which generate
-- parse tables on-the-fly and come with better error recovery facilities
-- than traditional parser combinators. The applied technique for
-- efficiently computing the parse tables makes essential use of the
-- memorization build into lazy evaluation.
--
-- The present implementation does not exactly follow S. D. Swierstra and
-- L. Duponcheel, ``Deterministic, Error-Correcting Combinator Parsers'', in
-- John Launchbury, Erik Meijer, and Tim Sheard (Eds.) "Advanced Functional
-- Programming", Springer-Verlag, Lecture Notes in Computer Science 1129,
-- 184-207, 1996. Instead, the data structure is used to keep track of the
-- possibility of emptiness of a parser (variant `Empty') and the first set
-- of a parser (the token component of the list stored in the variant
-- `Alts'). This is not unlike a revised version published by
-- S. D. Swierstra, but seems somewhat simpler than his version and adds
-- optimized `Skip' actions (actions where the token is discarded).
--
--- DOCU ----------------------------------------------------------------------
--
-- language: Haskell 98 & rank-2 polymorphism (existentially quantified type
-- variables)
--
-- Unlike conventional parser combinators, the combinators do not produce
-- parsers, but only specifications of parsers that can then be executed
-- using the function `parse'.
--
-- It is basically impossible to get this efficient without
-- universally-quantified data type fields (or existentially quantified type
-- variables) as soon as we encode the parsers in a data structure. The
-- reason is that we cannot store the action functions in the structure
-- without that feature.
--
-- A user-defined state can be passed down in the parser and be threaded
-- through the individual actions.
--
-- Tokens:
--
-- * Tokens must contain a position and equality must be defined for them.
-- The equality determines whether they "match" during parsing, ie, whether
-- they are equal modulo their attributes (the position is, of course, an
-- attribute). Tokens are, furthermore, printable (instance of `Show');
-- the resulting string should correspond to the lexeme of the token and
-- not the data constructor used to represent it internally.
--
--- TODO ----------------------------------------------------------------------
--
-- * Should tokens be an instance of `Ix' instead of only `Eq'? Then, we
-- could use arrays to represent the alternatives in the parser
-- specification. (Would at least considerably simplify the case where two
-- `Alts' parsers are combined by a <|>.)
--
-- * Error correction is still missing.
--
-- * `execLexer': The extra case construct when we have `Empty' may be
-- inefficient. We could introduce another variant of `Parser',
-- `End x', which behaves like `Empty x (Alts [])', but can be easily
-- recognized by the pattern matching in `execLexer'.
--
module Parsers (Token, Parser, empty, token, skip, (<|>), (*$>), (*>), ($>),
action, meta, opt, (-*>), (*->), many, list, many1, list1,
sep, seplist, sep1, seplist1, execParser)
where
import Common (Position, Pos (posOf), nopos)
import Errors (interr, ErrorLvl(..), Error, makeError)
infix 5 `opt`
infixl 4 *>, -*>, *->, *$>, $>
infixl 3 `action`
infixl 2 <|>
-- data structures
-- ---------------
-- token class (EXPORTED)
--
class (Pos t, Show t, Eq t) => Token t
-- tree structure used to represent parsers specifications (EXPORTED
-- ABSTRACTLY)
--
data Token t =>
Parser a t r = -- Maybe end of input
--
Empty r -- return if no input
(Parser a t r) -- used if there is input
--
-- Selection of acceptable tokens paired with an action
--
| Alts [(t, Action a t r)]
--
-- top-down meta action transforming the threaded state;
-- the result of the state transformer (type `q') is
-- passed to the result of the following parser; the meta
-- action has to be executed before the parser applied, as
-- the parser get's the internal state *after* transformed
-- by the meta action
--
| forall q. Meta (a -> (a, q))
(Parser a t (q -> r))
-- actions
--
-- Note that the rank-2 polymorphism (existentially quantified type
-- variable) is essential here to seperate the action function from the
-- parser (if we don't do that, the actions are pushed down in the parser
-- structure until they reach the `Empty' variant matching the end-of-file in
-- the actual parse - this makes the parser structure as deep as the input has
-- tokens!)
--
data Token t =>
Action a t r = forall q. Action (t -> q -> r,
Parser a t q)
| Skip (Parser a t r) -- ignore token
-- basic combinators
-- -----------------
-- Without consuming any input, yield the given result value (EXPORTED)
--
empty :: Token t => r -> Parser a t r
empty x = Empty x (Alts [])
-- Consume a token that is equal to the given one; the consumed token is
-- returned as the result (EXPORTED)
--
token :: Token t => t -> Parser a t t
token t = Alts [(t, Action (const, empty oops))]
where
oops = interr "Parsers.token: Touched untouchable value!"
-- Consume a token that is equal to the given one; the consumed token is
-- thrown away (EXPORTED)
--
skip :: Token t => t -> Parser a t ()
skip t = Alts [(t, Skip (empty ()))]
-- Alternative parsers (EXPORTED)
--
(<|>) :: Token t => Parser a t r -> Parser a t r -> Parser a t r
--
-- * Alternatives require to merge the alternative sets of the two parsers.
-- The most interesting case is where both sets contain cases for the same
-- token. In this case, we left factor over this token. This requires some
-- care with the actions, which (1) have to be pushed down into their
-- corresponding alternatives in a way that (2) they can get at the current
-- token, albeit with a delay, ie, we flip the arguments.
--
-- * Meta actions can may never occur in alternatives.
--
(Empty _ _) <|> (Empty _ _) = interr "Parsers.<|>: Ambiguous grammar!"
(Empty x p) <|> q = Empty x (p <|> q)
p <|> (Empty x q) = Empty x (p <|> q)
(Meta g p) <|> q = Meta g (p <|> const $>q)
p <|> (Meta g q) = Meta g (const $> p <|> q)
(Alts alts1) <|> (Alts alts2) = Alts (foldr addAlt alts1 alts2)
where
addAlt alt [] = [alt]
addAlt alt1@(t, a) (alt2@(t', a'):alts)
| t == t' = (t, merge a a') : alts
| otherwise = alt2 : addAlt alt1 alts
merge (Skip p) (Skip p') = Skip (p <|> p')
merge (Skip p) (Action (a', p')) =
Action (\t tr -> tr t, const $> p <|> (flip a') $> p')
merge (Action (a, p)) (Skip p') =
Action (\t tr -> tr t, (flip a) $> p <|> const $> p')
merge (Action (a, p)) (Action (a', p')) =
Action (\t tr -> tr t, (flip a) $> p <|> (flip a') $> p')
-- Sequential parsers, where the result of the first is applied to the result
-- of the second (EXPORTED)
--
(*$>) :: Token t => Parser a t (s -> r) -> Parser a t s -> Parser a t r
(Empty f p) *$> q = p *$> q <|> (f $> q)
(Meta h p) *$> q = Meta h (flip $> p *$> q)
(Alts alts) *$> q = Alts [(t, propagateTo a) | (t, a) <- alts]
where
-- propagates the action into `p'
--
propagateTo (Skip p ) = Skip (p *$> q)
propagateTo (Action (a, p)) =
Action (\t tr -> tr t,
((\b s t -> a t b s) $> p) *$> q)
-- Sequential parsers, where the overall result is the pair of the component
-- results (EXPORTED)
--
(*>) :: Token t => Parser a t s -> Parser a t r -> Parser a t (s, r)
(Empty x p) *> q = p *> q <|> ((\y -> (x, y)) $> q)
(Meta h p) *> q = Meta h ((\(xs, r) x -> (xs x, r)) $> (p *> q))
(Alts alts) *> q = Alts [(t, propagateTo a) | (t, a) <- alts]
where
-- propagates the action into `p'
--
propagateTo (Skip p ) = Skip (p *> q)
propagateTo (Action (a, p)) =
Action (\t (ts, r) -> (ts t, r), ((flip a) $> p) *> q)
-- apply a function to the result yielded by a parser (EXPORTED)
--
($>) :: Token t => (s -> r) -> Parser a t s -> Parser a t r
f $> (Empty x p) = Empty (f x) (f $> p)
f $> (Meta g p) = Meta g ((f .) $> p)
f $> (Alts alts) = Alts [(t, applyTo a) | (t, a) <- alts]
where
applyTo (Skip p ) = Skip (f $> p)
applyTo (Action (a, p)) = Action (\t b -> f (a t b), p)
-- produces a parser that encapsulates a meta action manipulating the
-- threaded state (EXPORTED)
--
meta :: Token t => (a -> (a, r)) -> Parser a t r
meta g = Meta g (empty id)
-- non-basic combinators
-- ---------------------
-- postfix action (EXPORTED)
--
action :: Token t => Parser a t s -> (s -> r) -> Parser a t r
action = flip ($>)
-- optional parse (EXPORTED)
--
opt :: Token t => Parser a t r -> r -> Parser a t r
p `opt` r = p <|> empty r
-- sequential composition, where the result of the rhs is discarded (EXPORTED)
--
(*->) :: Token t => Parser a t r -> Parser a t s -> Parser a t r
p *-> q = const $> p *$> q
-- sequential composition, where the result of the lhs is discarded (EXPORTED)
--
(-*>) :: Token t => Parser a t s -> Parser a t r -> Parser a t r
p -*> q = flip const $> p *$> q
-- accept a sequence of productions from a nonterminal (EXPORTED)
--
-- * Uses a graphical structure to require only constant space, but this
-- behaviour is destroyed if the replicated parser is a `skip c'.
--
many :: Token t => (r -> s -> s) -> s -> Parser a t r -> Parser a t s
--
-- * we need to build a cycle, to avoid building the parser structure over and
-- over again
--
many f e p = let me = (f $> p *$> me) `opt` e
in me
-- return the results of a sequence of productions from a nonterminal in a
-- list (EXPORTED)
--
list :: Token t => Parser a t r -> Parser a t [r]
list = many (:) []
-- accept a sequence consisting of at least one production from a nonterminal
-- (EXPORTED)
--
many1 :: Token t => (r -> r -> r) -> Parser a t r -> Parser a t r
--many1 f p = p <|> (f <$> p <*> many1 f p)
many1 f p = let me = p <|> (f $> p *$> me)
in me
-- accept a sequence consisting of at least one production from a nonterminal
-- and return a list of results (EXPORTED)
--
list1 :: Token t => Parser a t r -> Parser a t [r]
list1 p = let me = (\x -> [x]) $> p
<|> ((:) $> p *$> me)
in me
-- accept a sequence of productions from a nonterminal, which are seperated by
-- productions of another nonterminal (EXPORTED)
--
sep :: Token t
=> (r -> u -> s -> s)
-> (r -> s)
-> s
-> Parser a t u
-> Parser a t r
-> Parser a t s
sep f g e sepp p = let me = g $> p <|> (f $> p *$> sepp *$> me)
in me `opt` e
-- return the results of a sequence of productions from a nonterminal, which
-- are seperated by productions of another nonterminal, in a list (EXPORTED)
--
seplist :: Token t => Parser a t s -> Parser a t r -> Parser a t [r]
seplist = sep (\h _ l -> h:l) (\x -> [x]) []
-- accept a sequence of productions from a nonterminal, which are seperated by
-- productions of another nonterminal (EXPORTED)
--
sep1 :: Token t
=> (r -> s -> r -> r) -> Parser a t s -> Parser a t r -> Parser a t r
sep1 f sepp p = let me = p <|> (f $> p *$> sepp *$> me)
in me
-- accept a sequence consisting of at least one production from a nonterminal,
-- which are separated by the productions of another nonterminal; the list of
-- results is returned (EXPORTED)
--
seplist1 :: Token t => Parser a t s -> Parser a t r -> Parser a t [r]
seplist1 sepp p = p *> list (sepp -*> p) `action` uncurry (:)
{- Is the above also space save? Should be. Contributed by Roman.
seplist1 sepp p = let me = (\x -> [x]) $> p
<|> ((:) $> p *-> sepp *$> me)
in me
-}
-- execution of a parser
-- ---------------------
-- apply a parser to a token sequence (EXPORTED)
--
-- * Trailing tokens are returned in the third component of the result (the
-- longest match is found).
--
-- * Currently, all errors are fatal; thus, the result (first component of the
-- returned pair) is undefined in case of an error (this changes when error
-- correction is added).
--
execParser :: Token t => Parser a t r -> a -> [t] -> (r, [Error], [t])
--
-- Note that we cannot avoid the let-in in the `Action' case, as an
-- accumulator for the result value doesn't work here due to the use of an
-- existential type variable in the definition of `Action'.
--
execParser = exec
where
exec :: Token t
=> Parser a t r -> a -> [t] -> (r, [Error], [t])
exec (Empty x _) _ [] = (x, [], [])
exec (Empty x p) a ts = case p of
Alts [] -> (x, [], ts)
_ -> exec p a ts
-- exec (Empty _ p) a ts = exec p a ts
exec (Meta h p) a ts = let (a', x) = h a
(xr, errs, ts') = exec p a' ts
in
(xr x, errs, ts')
exec (Alts alts) _ [] = (errtouched,
[makeError FatalErr nopos eofErr], [])
exec (Alts [] ) _ _ = (errtouched,
[makeError FatalErr nopos trailErr], [])
exec (Alts alts) a (t:ts) =
case lookup t alts of
Nothing -> (errtouched,
[makeError FatalErr (posOf t) (illErr t)], [])
Just (Action (b, p)) -> let (r, errs,ts') = exec p a ts
in
(b t r, errs, ts')
Just (Skip p ) -> exec p a ts
eofErr = ["Unexpected end of input!",
"The code at the end of the file seems truncated."]
trailErr = ["Trailing garbage!",
"There seem to be characters behind the valid end of input."]
illErr t = ["Syntax error!",
"The symbol `" ++ show t ++ "' does not fit here."]
errtouched = interr "Parsers.errtouch: Touched undefined result!"
|