File: projections.cpp

package info (click to toggle)
ctsim 5.2.0-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 7,256 kB
  • ctags: 6,355
  • sloc: cpp: 26,866; sh: 4,290; ansic: 1,254; perl: 296; makefile: 150
file content (1469 lines) | stat: -rw-r--r-- 46,859 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
/*****************************************************************************
** FILE IDENTIFICATION
**
**   Name:         projections.cpp         Projection data classes
**   Programmer:   Kevin Rosenberg
**   Date Started: Aug 84
**
**  This is part of the CTSim program
**  Copyright (c) 1983-2009 Kevin Rosenberg
**
**  This program is free software; you can redistribute it and/or modify
**  it under the terms of the GNU General Public License (version 2) as
**  published by the Free Software Foundation.
**
**  This program is distributed in the hope that it will be useful,
**  but WITHOUT ANY WARRANTY; without even the implied warranty of
**  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
**  GNU General Public License for more details.
**
**  You should have received a copy of the GNU General Public License
**  along with this program; if not, write to the Free Software
**  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
******************************************************************************/

#include "ct.h"
#include <ctime>
#include "interpolator.h"

const kuint16 Projections::m_signature = ('P'*256 + 'J');

const int Projections::POLAR_INTERP_INVALID = -1;
const int Projections::POLAR_INTERP_NEAREST = 0;
const int Projections::POLAR_INTERP_BILINEAR = 1;
const int Projections::POLAR_INTERP_BICUBIC = 2;

const char* const Projections::s_aszInterpName[] =
{
  "nearest",
  "bilinear",
//  {"bicubic"},
};

const char* const Projections::s_aszInterpTitle[] =
{
  "Nearest",
  "Bilinear",
//  {"Bicubic"},
};

const int Projections::s_iInterpCount = sizeof(s_aszInterpName) / sizeof(char*);



/* NAME
*    Projections                Constructor for projections matrix storage
*
* SYNOPSIS
*    proj = projections_create (filename, nView, nDet)
*    Projections& proj          Allocated projections structure & matrix
*    int nView                  Number of rotated view
*    int nDet                   Number of detectors
*
*/

Projections::Projections (const Scanner& scanner)
: m_projData(0)
{
  initFromScanner (scanner);
}


Projections::Projections (const int nView, const int nDet)
: m_projData(0)
{
  init (nView, nDet);
}

Projections::Projections (void)
: m_projData(0)
{
  init (0, 0);
}

Projections::~Projections (void)
{
  deleteProjData();
}

int
Projections::convertInterpNameToID (const char* const interpName)
{
  int interpID = POLAR_INTERP_INVALID;

  for (int i = 0; i < s_iInterpCount; i++)
    if (strcasecmp (interpName, s_aszInterpName[i]) == 0) {
      interpID = i;
      break;
    }

    return (interpID);
}

const char*
Projections::convertInterpIDToName (const int interpID)
{
  static const char *interpName = "";

  if (interpID >= 0 && interpID < s_iInterpCount)
    return (s_aszInterpName[interpID]);

  return (interpName);
}

const char*
Projections::convertInterpIDToTitle (const int interpID)
{
  static const char *interpTitle = "";

  if (interpID >= 0 && interpID < s_iInterpCount)
    return (s_aszInterpTitle[interpID]);

  return (interpTitle);
}



void
Projections::init (const int nView, const int nDet)
{
  m_label.setLabelType (Array2dFileLabel::L_HISTORY);
  m_nView = nView;
  m_nDet = nDet;
  newProjData ();

  time_t t = time (NULL);
  tm* lt = localtime (&t);
  m_year = lt->tm_year;
  m_month = lt->tm_mon;
  m_day = lt->tm_mday;
  m_hour = lt->tm_hour;
  m_minute = lt->tm_min;
  m_second = lt->tm_sec;
}

void
Projections::initFromScanner (const Scanner& scanner)
{
  m_label.setLabelType (Array2dFileLabel::L_HISTORY);
  deleteProjData();
  init (scanner.nView(), scanner.nDet());

  m_rotInc = scanner.rotInc();
  m_detInc = scanner.detInc();
  m_detStart =  scanner.detStart();
  m_geometry = scanner.geometry();
  m_dFocalLength = scanner.focalLength();
  m_dSourceDetectorLength = scanner.sourceDetectorLength();
  m_dViewDiameter = scanner.viewDiameter();
  m_rotStart = scanner.offsetView()*scanner.rotInc();
  m_dFanBeamAngle = scanner.fanBeamAngle();
}

void
Projections::setNView (int nView)  // used by MPI to reduce # of views
{
  deleteProjData();
  init (nView, m_nDet);
}

//  Helical 180 Linear Interpolation.
//  This member function takes a set of helical scan projections and
//  performs a linear interpolation between pairs of complementary rays
//  to produce a single projection data set approximating what would be
//  measured at a single axial plane.
//  Complementary rays are rays which traverse the same path through the
//  phantom in opposite directions.
//
//  For parallel beam geometry, a ray with a given gantry angle beta and a
//  detector iDet will have a complementary ray at beta + pi and nDet-iDet
//
//  For equiangular or equilinear beam geometry the complementary ray to
//  gantry angle beta and fan-beam angle gamma is at
//  beta-hat = beta +2*gamma + pi, and gamma-hat =  -gamma.
//  Note that beta-hat - beta depends on gamma and is not constant.
//
//  The algorithm used here is from Crawford and King, Med. Phys. 17(6)
//  1990 p967; what they called method "C", CSH-HH.  It uses interpolation only
//  between pairs of complementary rays on either side of an image plane.
//  Input data must sample gantry angles from zero to
//  (2*pi + 2* fan-beam-angle).  The data set produced contains gantry
//  angles from 0 to Pi+fan-beam-angle.  This is a "halfscan" data set,
//  which still contains redundant data, and can be used with a half scan
//  reconstruction to produce an image.
//  In this particular implementation a lower triangle from (beta,gamma) =
//  (0,-fanAngle/2)->(2*fanAngle,-fanAngle/2)->(0,fanAngle/2) contains
//  zeros, but is actually redundant with data contained in the region
//  (pi+fanAngle,-fanAngle/2)->(pi+fanAngle, fanAngle/2) ->(pi-fanAngle,
//  fanAngle/2).
//
int
Projections::Helical180LI(int interpolation_view)
{
   if (m_geometry == Scanner::GEOMETRY_INVALID)
   {
       std::cerr << "Invalid geometry " << m_geometry << std::endl;
       return (2);
   }
   else if (m_geometry == Scanner::GEOMETRY_PARALLEL)
   {
       std::cerr << "Helical 180LI not yet implemented for PARALLEL geometry"
                   << std::endl;
       return (2);
   }
   else if (m_geometry == Scanner::GEOMETRY_EQUILINEAR)
   {
       std::cerr << "Helical 180LI not yet implemented for EQUILINEAR geometry"
                   << std::endl;
       return (2);
   }
   else if (m_geometry == Scanner::GEOMETRY_EQUIANGULAR)
   {
           return Helical180LI_Equiangular(interpolation_view);
   }
   else
   {
       std::cerr << "Invalid geometry  in projection data file" << m_geometry
                   << std::endl;
       return (2);
   }
}
int
Projections::Helical180LI_Equiangular(int interpView)
{
   double dbeta = m_rotInc;
   double dgamma =  m_detInc;
   double fanAngle = m_dFanBeamAngle;
   int offsetView=0;

   // is there enough data in the data set?  Should have 2(Pi+fanAngle)
   // coverage minimum
   if ( m_nView <  static_cast<int>((2*( PI + fanAngle ) ) / dbeta) -1 ){
       std::cerr   << "Data set does not include 360 +2*FanBeamAngle views"
                   << std::endl;
       return (1);
   }

   if (interpView < 0)   // use default position at PI+fanAngle
   {
       interpView = static_cast<int> ((PI+fanAngle)/dbeta);
   }
   else
   {
       // check if there is PI+fanAngle data on either side of the
       // of the specified image plane
       if ( interpView*dbeta < PI+fanAngle ||
            interpView*dbeta + PI + fanAngle > m_nView*dbeta)
       {
           std::cerr << "There isn't PI+fanAngle of data on either side of the requested interpolation view" << std::endl;
           return(1);
       }
       offsetView = interpView - static_cast<int>((PI+fanAngle)/dbeta);

   }
   int last_interp_view = static_cast<int> ((PI+fanAngle)/dbeta);


// make a new array for data...
   class DetectorArray ** newdetarray = new DetectorArray * [last_interp_view+1];
   for ( int i=0 ; i <= last_interp_view ; i++ ){
       newdetarray[i] = new DetectorArray (m_nDet);
       newdetarray[i]->setViewAngle((i+offsetView)*dbeta);
       DetectorValue* newdetval = (newdetarray[i])->detValues();
       // and initialize the data to zero
       for (int j=0; j < m_nDet; j++)
           newdetval[j] = 0.;
   }

   int last_acq_view = 2*last_interp_view;
   for ( int iView = 0 ; iView <= last_acq_view; iView++) {
       double beta = iView * dbeta;

       for ( int iDet = 0; iDet < m_nDet; iDet++) {
           double gamma = (iDet -(m_nDet-1)/2)* dgamma ;
           int newiView, newiDet;
           if (beta < PI+fanAngle) { //if (PI +fanAngle - beta > dbeta )
               //newbeta = beta;
               //newgamma = gamma;
               newiDet = iDet;
               newiView = iView;
           }
           else // (beta > PI+fanAngle)
           {
               //newbeta = beta +2*gamma - 180;
               //newgamma = -gamma;
               newiDet = -iDet + (m_nDet -1);
               // newiView = nearest<int>((beta + 2*gamma - PI)/dbeta);
               //newiView = static_cast<int>(( (iView*dbeta) + 2*(iDet-(m_nDet-1)/2)*dgamma - PI)/dbeta);
               newiView = nearest<int>(( (iView*dbeta) + 2*(iDet-(m_nDet-1)/2)*dgamma - PI)/dbeta);
           }

#ifdef DEBUG
//std::cout << beta << " "<< gamma << " " << newbeta << " " << newgamma <<"    " << iView-offsetView << " " << iDet << " " << newiView << " " << newiDet << std::endl;
//std::cout << iView-offsetView << " " << iDet << " " << newiView << " " << newiDet << std::endl;
#endif

           if (   ( beta > fanAngle - 2*gamma)
               && ( beta < 2*PI + fanAngle -2*gamma)  )
          {  // not in region  1 or 8
               DetectorValue* detval = (m_projData[iView+offsetView])->detValues();
               DetectorValue* newdetval = (newdetarray[newiView])->detValues();
               if (   beta > fanAngle - 2*gamma
                   && beta <= 2*fanAngle ) {  // in region 2
                   newdetval[newiDet] +=
                       (beta +2*gamma - fanAngle)/(PI+2*gamma)
                               * detval[iDet];
               } else if ( beta > 2*fanAngle
                          && beta <= PI - 2*gamma) {  // in region 3
                   newdetval[newiDet] +=
                       (beta +2*gamma - fanAngle)/(PI+2*gamma)
                               * detval[iDet];
               }
               else if (   beta > PI -2*gamma
                        && beta <= PI + fanAngle ) {  // in region 4
                   newdetval[newiDet] +=
                       (beta +2*gamma - fanAngle)/(PI+2*gamma)
                               * detval[iDet];
               }
               else if (   beta > PI + fanAngle
                        && beta <= PI +2*fanAngle -2*gamma) { // in region 5
                   newdetval[newiDet] +=
                       (2*PI - beta - 2*gamma + fanAngle)/(PI-2*gamma)
                               *detval[iDet];
               }
               else if (   beta > PI +2*fanAngle -2*gamma
                        && beta <= 2*PI) {  // in region 6
                   newdetval[newiDet] +=
                       (2*PI - beta - 2*gamma + fanAngle)/(PI-2*gamma)
                       *detval[iDet];
               }
               else if (   beta > 2*PI
                        && beta <= 2*PI + fanAngle -2*gamma){ // in region 7
                   newdetval[newiDet] +=
                       (2*PI - beta -2*gamma + fanAngle)/(PI-2*gamma)
                       *detval[iDet];
               }
               else
               {
                   ; // outside region of interest
               }
           }
       }
   }
   deleteProjData();
   m_projData = newdetarray;
   m_nView = last_interp_view+1;

   return (0);
}
// HalfScanFeather:
// A HalfScan Projection Data Set  for equiangular geometry,
// covering gantry angles from 0 to  pi+fanBeamAngle
// and fan angle gamma from -fanBeamAngle/2 to fanBeamAngle/2
// contains redundant information.  If one copy of this data is left as
// zero, (as in the Helical180LI routine above) overweighting is avoided,
// but the discontinuity in the data introduces ringing in the image.
// This routine makes a copy of the data and applies a weighting to avoid
// over-representation, as given in Appendix C of Crawford and King, Med
// Phys 17 1990, p967.
int
Projections::HalfScanFeather(void)
{
   double dbeta = m_rotInc;
   double dgamma =  m_detInc;
   double fanAngle = m_dFanBeamAngle;

// is there enough data?
   if ( m_nView !=  static_cast<int>(( PI+fanAngle ) / dbeta) +1 ){
       std::cerr   << "Data set does seem have enough data to be a halfscan data set"  << std::endl;
       return (1);
   }
   if (m_geometry == Scanner::GEOMETRY_INVALID) {
       std::cerr << "Invalid geometry " << m_geometry << std::endl;
       return (2);
   }

   if (m_geometry == Scanner::GEOMETRY_PARALLEL) {
       std::cerr << "HalfScanFeather not yet implemented for PARALLEL geometry"<< std::endl;
       return (2);
   }

   for ( int iView2 = 0 ; iView2 < m_nView; iView2++) {
       double beta2 = iView2 * dbeta;
       for ( int iDet2 = 0; iDet2 < m_nDet; iDet2++) {
           double gamma2 = (iDet2 -(m_nDet-1)/2)* dgamma ;
           if ( ( beta2 >= PI  - 2*gamma2) ) {  // in redundant data region
               int iView1, iDet1;
               iDet1 =  (m_nDet -1) - iDet2;
               //iView1 = nearest<int>((beta2 + 2*gamma2 - PI)/dbeta);
               iView1 = nearest<int>(( (iView2*dbeta)
                               + 2*(iDet2-(m_nDet-1)/2)*dgamma - PI)/dbeta);


               DetectorValue* detval2 = (m_projData[iView2])->detValues();
               DetectorValue* detval1 = (m_projData[iView1])->detValues();

               detval1[iDet1] = detval2[iDet2] ;

               double x, w1,w2,beta1, gamma1;
               beta1= iView1*dbeta;
               gamma1 = -gamma2;
               if ( beta1 <= (fanAngle - 2*gamma1) )
                   x = beta1 / ( fanAngle - 2*gamma1);
               else if ( (fanAngle  - 2*gamma1 <= beta1 ) && beta1 <= PI - 2*gamma1)
                   x = 1;
               else if ( (PI - 2*gamma1 <= beta1 ) && ( beta1 <=PI + fanAngle) )
                   x = (PI +fanAngle - beta1)/(fanAngle + 2*gamma1);
               else {
                   std::cerr << "Shouldn't be here!"<< std::endl;
                   return(4);
               }
               w1 = (3*x - 2*x*x)*x;
               w2 = 1-w1;
               detval1[iDet1] *= w1;
               detval2[iDet2] *= w2;

           }
       }
   }
   // heuristic scaling, why this factor?
   double scalefactor = m_nView * m_rotInc / PI;
   for ( int iView = 0 ; iView < m_nView; iView++) {
       DetectorValue* detval = (m_projData[iView])->detValues();
       for ( int iDet = 0; iDet < m_nDet; iDet++) {
           detval[iDet] *= scalefactor;
       }
   }

   return (0);
}

// NAME
// newProjData

void
Projections::newProjData (void)
{
  if (m_projData)
    sys_error(ERR_WARNING, "m_projData != NULL [newProjData]");

  if (m_nView > 0 && m_nDet) {
    m_projData = new DetectorArray* [m_nView];

    for (int i = 0; i < m_nView; i++)
      m_projData[i] = new DetectorArray (m_nDet);
  }
}


/* NAME
*   projections_free                    Free memory allocated to projections
*
* SYNOPSIS
*   projections_free(proj)
*   Projections& proj                           Projectionss to be deallocated
*/

void
Projections::deleteProjData (void)
{
  if (m_projData != NULL) {
    for (int i = 0; i < m_nView; i++)
      delete m_projData[i];

    delete m_projData;
    m_projData = NULL;
  }
}


/* NAME
*    Projections::headerWwrite         Write data header for projections file
*
*/

bool
Projections::headerWrite (fnetorderstream& fs)
{
  kuint16 _hsize = m_headerSize;
  kuint16 _signature = m_signature;
  kuint32 _nView = m_nView;
  kuint32 _nDet = m_nDet;
  kuint32 _geom = m_geometry;
  kuint16 _remarksize = m_remark.length();
  kuint16 _year = m_year;
  kuint16 _month = m_month;
  kuint16 _day = m_day;
  kuint16 _hour = m_hour;
  kuint16 _minute = m_minute;
  kuint16 _second = m_second;

  kfloat64 _calcTime = m_calcTime;
  kfloat64 _rotStart = m_rotStart;
  kfloat64 _rotInc = m_rotInc;
  kfloat64 _detStart = m_detStart;
  kfloat64 _detInc = m_detInc;
  kfloat64 _viewDiameter = m_dViewDiameter;
  kfloat64 _focalLength = m_dFocalLength;
  kfloat64 _sourceDetectorLength = m_dSourceDetectorLength;
  kfloat64 _fanBeamAngle = m_dFanBeamAngle;

  fs.seekp(0);
  if (! fs)
    return false;

  fs.writeInt16 (_hsize);
  fs.writeInt16 (_signature);
  fs.writeInt32 (_nView);
  fs.writeInt32 (_nDet);
  fs.writeInt32 (_geom);
  fs.writeFloat64 (_calcTime);
  fs.writeFloat64 (_rotStart);
  fs.writeFloat64 (_rotInc);
  fs.writeFloat64 (_detStart);
  fs.writeFloat64 (_detInc);
  fs.writeFloat64 (_viewDiameter);
  fs.writeFloat64 (_focalLength);
  fs.writeFloat64 (_sourceDetectorLength);
  fs.writeFloat64 (_fanBeamAngle);
  fs.writeInt16 (_year);
  fs.writeInt16 (_month);
  fs.writeInt16 (_day);
  fs.writeInt16 (_hour);
  fs.writeInt16 (_minute);
  fs.writeInt16 (_second);
  fs.writeInt16 (_remarksize);
  fs.write (m_remark.c_str(), _remarksize);

  m_headerSize = fs.tellp();
  _hsize = m_headerSize;
  fs.seekp(0);
  fs.writeInt16 (_hsize);
  if (! fs)
    return false;

  return true;
}

/* NAME
*    projections_read_header         Read data header for projections file
*
*/
bool
Projections::headerRead (fnetorderstream& fs)
{
  kuint16 _hsize, _signature, _year, _month, _day, _hour, _minute, _second, _remarksize = 0;
  kuint32 _nView, _nDet, _geom;
  kfloat64 _calcTime, _rotStart, _rotInc, _detStart, _detInc, _focalLength, _sourceDetectorLength, _viewDiameter, _fanBeamAngle;

  fs.seekg(0);
  if (! fs)
    return false;

  fs.readInt16 (_hsize);
  fs.readInt16 (_signature);
  fs.readInt32 (_nView);
  fs.readInt32 (_nDet);
  fs.readInt32 (_geom);
  fs.readFloat64 (_calcTime);
  fs.readFloat64 (_rotStart);
  fs.readFloat64 (_rotInc);
  fs.readFloat64 (_detStart);
  fs.readFloat64 (_detInc);
  fs.readFloat64 (_viewDiameter);
  fs.readFloat64 (_focalLength);
  fs.readFloat64 (_sourceDetectorLength);
  fs.readFloat64 (_fanBeamAngle);
  fs.readInt16 (_year);
  fs.readInt16 (_month);
  fs.readInt16 (_day);
  fs.readInt16 (_hour);
  fs.readInt16 (_minute);
  fs.readInt16 (_second);
  fs.readInt16 (_remarksize);

  if (! fs) {
    sys_error (ERR_SEVERE, "Error reading header information , _remarksize=%d [projections_read_header]", _remarksize);
    return false;
  }

  if (_signature != m_signature) {
    sys_error (ERR_SEVERE, "File %s does not have a valid projection file signature", m_filename.c_str());
    return false;
  }

  char* pszRemarkStorage = new char [_remarksize+1];
  fs.read (pszRemarkStorage, _remarksize);
  if (! fs) {
    sys_error (ERR_SEVERE, "Error reading remark, _remarksize = %d", _remarksize);
    return false;
  }
  pszRemarkStorage[_remarksize] = 0;
  m_remark = pszRemarkStorage;
  delete pszRemarkStorage;

  off_t _hsizeread = fs.tellg();
  if (!fs || _hsizeread != _hsize) {
    sys_error (ERR_WARNING, "File header size read %ld != file header size stored %ld [read_projections_header]\n_remarksize=%ld", (long int) _hsizeread, _hsize, _remarksize);
    return false;
  }

  m_headerSize = _hsize;
  m_nView = _nView;
  m_nDet = _nDet;
  m_geometry = _geom;
  m_calcTime = _calcTime;
  m_rotStart = _rotStart;
  m_rotInc = _rotInc;
  m_detStart = _detStart;
  m_detInc = _detInc;
  m_dFocalLength = _focalLength;
  m_dSourceDetectorLength = _sourceDetectorLength;
  m_dViewDiameter = _viewDiameter;
  m_dFanBeamAngle = _fanBeamAngle;
  m_year = _year;
  m_month = _month;
  m_day = _day;
  m_hour = _hour;
  m_minute = _minute;
  m_second = _second;

  m_label.setLabelType (Array2dFileLabel::L_HISTORY);
  m_label.setLabelString (m_remark);
  m_label.setCalcTime (m_calcTime);
  m_label.setDateTime (m_year, m_month, m_day, m_hour, m_minute, m_second);

  return true;
}

bool
Projections::read (const std::string& filename)
{
  return read (filename.c_str());
}


bool
Projections::read (const char* filename)
{
  m_filename = filename;
#ifdef MSVC
  frnetorderstream fileRead (m_filename.c_str(), std::ios::in | std::ios::binary);
#else
  frnetorderstream fileRead (m_filename.c_str(), std::ios::in | std::ios::binary); // | std::ios::nocreate);
#endif

  if (fileRead.fail())
    return false;

  if (! headerRead (fileRead))
    return false;

  deleteProjData ();
  newProjData();

  for (int i = 0; i < m_nView; i++) {
    if (! detarrayRead (fileRead, *m_projData[i], i))
      break;
  }

  fileRead.close();
  return true;
}


bool
Projections::copyViewData (const std::string& filename, std::ostream& os, int startView, int endView)
{
  return copyViewData (filename.c_str(), os, startView, endView);
}

bool
Projections::copyViewData (const char* const filename, std::ostream& os, int startView, int endView)
{
  frnetorderstream is (filename, std::ios::in | std::ios::binary);
  kuint16 sizeHeader, signature;
  kuint32 _nView, _nDet;

  is.seekg (0);
  if (is.fail()) {
    sys_error (ERR_SEVERE, "Unable to read projection file %s", filename);
    return false;
  }

  is.readInt16 (sizeHeader);
  is.readInt16 (signature);
  is.readInt32 (_nView);
  is.readInt32 (_nDet);
  int nView = _nView;
  int nDet = _nDet;

  if (signature != m_signature) {
    sys_error (ERR_SEVERE, "Illegal signature in projection file %s", filename);
    return false;
  }

  if (startView < 0)
    startView = 0;
  if (startView > nView - 1)
    startView = nView;
  if (endView < 0 || endView > nView - 1)
    endView = nView - 1;

  if (startView > endView) { // swap if start > end
    int tempView = endView;
    endView = startView;
    startView = tempView;
  }

  int sizeView = 8 /* view_angle */ + 4 /* nDet */ + (4 * nDet);
  unsigned char* pViewData = new unsigned char [sizeView];

  for (int i = startView; i <= endView; i++) {
    is.seekg (sizeHeader + i * sizeView);
    is.read (reinterpret_cast<char*>(pViewData), sizeView);
    os.write (reinterpret_cast<char*>(pViewData), sizeView);
    if (is.fail() || os.fail())
      break;
  }

  delete pViewData;
  if (is.fail())
    sys_error (ERR_SEVERE, "Error reading projection file");
  if (os.fail())
    sys_error (ERR_SEVERE, "Error writing projection file");

  return (! (is.fail() | os.fail()));
}

bool
Projections::copyHeader (const std::string& filename, std::ostream& os)
{
  return copyHeader (filename.c_str(), os);
}

bool
Projections::copyHeader (const char* const filename, std::ostream& os)
{
  frnetorderstream is (filename, std::ios::in | std::ios::binary);
  kuint16 sizeHeader, signature;
  is.readInt16 (sizeHeader);
  is.readInt16 (signature);
  is.seekg (0);
  if (signature != m_signature) {
    sys_error (ERR_SEVERE, "Illegal signature in projection file %s", filename);
    return false;
  }

  unsigned char* pHdrData = new unsigned char [sizeHeader];
  is.read (reinterpret_cast<char*>(pHdrData), sizeHeader);
  if (is.fail()) {
    sys_error (ERR_SEVERE, "Error reading header");
    return false;
  }

  os.write (reinterpret_cast<char*>(pHdrData), sizeHeader);
  if (os.fail()) {
    sys_error (ERR_SEVERE, "Error writing header");
    return false;
  }

  return true;
}

bool
Projections::write (const std::string& filename)
{
  return write (filename.c_str());
}

bool
Projections::write (const char* filename)
{
  frnetorderstream fs (filename, std::ios::out | std::ios::binary | std::ios::trunc | std::ios::ate);
  m_filename = filename;
  if (! fs) {
    sys_error (ERR_SEVERE, "Error opening file %s for output [projections_create]", filename);
    return false;
  }

  if (! headerWrite (fs))
    return false;

  if (m_projData != NULL) {
    for (int i = 0; i < m_nView; i++) {
      if (! detarrayWrite (fs, *m_projData[i], i))
        break;
    }
  }
  if (! fs)
    return false;

  fs.close();

  return true;
}

/* NAME
*   detarrayRead                Read a Detector Array structure from the disk
*
* SYNOPSIS
*   detarrayRead (proj, darray, view_num)
*   DETARRAY *darray            Detector array storage location to be filled
*   int      view_num           View number to read
*/

bool
Projections::detarrayRead (fnetorderstream& fs, DetectorArray& darray, const int iview)
{
  const int detval_bytes = darray.nDet() * sizeof(kfloat32);
  const int detheader_bytes = sizeof(kfloat64) /* view_angle */ + sizeof(kint32) /* nDet */;
  const int view_bytes = detheader_bytes + detval_bytes;
  const off_t start_data = m_headerSize + (iview * view_bytes);
  DetectorValue* detval_ptr = darray.detValues();
  kfloat64 view_angle;
  kuint32 nDet;

  fs.seekg (start_data);

  fs.readFloat64 (view_angle);
  fs.readInt32 (nDet);
  darray.setViewAngle (view_angle);
  //  darray.setNDet ( nDet);

  for (unsigned int i = 0; i < nDet; i++) {
    kfloat32 detval;
    fs.readFloat32 (detval);
    detval_ptr[i] = detval;
  }
  if (! fs)
    return false;

  return true;
}


/* NAME
*   detarrayWrite                       Write detector array data to the disk
*
* SYNOPSIS
*   detarrayWrite (darray, view_num)
*   DETARRAY *darray                    Detector array data to be written
*   int      view_num                   View number to write
*
* DESCRIPTION
*       This routine writes the detarray data from the disk sequentially to
*    the file that was opened with open_projections().  Data is written in
*    binary format.
*/

bool
Projections::detarrayWrite (fnetorderstream& fs, const DetectorArray& darray, const int iview)
{
  const int detval_bytes = darray.nDet() * sizeof(float);
  const int detheader_bytes = sizeof(kfloat64) /* view_angle */ + sizeof(kint32) /* nDet */;
  const int view_bytes = detheader_bytes + detval_bytes;
  const off_t start_data = m_headerSize + (iview * view_bytes);
  const DetectorValue* const detval_ptr = darray.detValues();
  kfloat64 view_angle = darray.viewAngle();
  kuint32 nDet = darray.nDet();

  fs.seekp (start_data);
  if (! fs) {
    sys_error (ERR_SEVERE, "Error seeking detectory array [detarrayWrite]");
    return false;
  }

  fs.writeFloat64 (view_angle);
  fs.writeInt32 (nDet);

  for (unsigned int i = 0; i < nDet; i++) {
    kfloat32 detval = detval_ptr[i];
    fs.writeFloat32 (detval);
  }

  if (! fs)
    return (false);

  return true;
}

/* NAME
*   printProjectionData                 Print projections data
*
* SYNOPSIS
*   printProjectionData ()
*/

void
Projections::printProjectionData ()
{
  printProjectionData (0, nView() - 1);
}

void
Projections::printProjectionData (int startView, int endView)
{
  printf("Projections Data\n\n");
  printf("Description: %s\n", m_remark.c_str());
  printf("Geometry: %s\n", Scanner::convertGeometryIDToName (m_geometry));
  printf("nView       = %8d             nDet = %8d\n", m_nView, m_nDet);
  printf("focalLength = %8.4f   ViewDiameter = %8.4f\n", m_dFocalLength, m_dViewDiameter);
  printf("fanBeamAngle= %8.4f SourceDetector = %8.4f\n", convertRadiansToDegrees(m_dFanBeamAngle), m_dSourceDetectorLength);
  printf("rotStart    = %8.4f         rotInc = %8.4f\n", m_rotStart, m_rotInc);
  printf("detStart    = %8.4f         detInc = %8.4f\n", m_detStart, m_detInc);
  if (m_projData != NULL) {
    if (startView < 0)
      startView = 0;
    if (endView < 0)
      endView = m_nView - 1;
    if (startView > m_nView - 1)
      startView = m_nView - 1;
    if (endView > m_nView - 1)
      endView = m_nView - 1;
    for (int ir = startView; ir <= endView - 1; ir++) {
      printf("View %d: angle %f\n", ir, m_projData[ir]->viewAngle());
      DetectorValue* detval = m_projData[ir]->detValues();
      for (int id = 0; id < m_projData[ir]->nDet(); id++)
        printf("%8.4f  ", detval[id]);
      printf("\n");
    }
  }
}

void
Projections::printScanInfo (std::ostringstream& os) const
{
  os << "Number of detectors: " << m_nDet << "\n";
  os << "Number of views: " << m_nView<< "\n";
  os << "Description: " << m_remark.c_str()<< "\n";
  os << "Geometry: " << Scanner::convertGeometryIDToName (m_geometry)<< "\n";
  os << "Focal Length: " << m_dFocalLength<< "\n";
  os << "Source Detector Length: " << m_dSourceDetectorLength << "\n";
  os << "View Diameter: " << m_dViewDiameter<< "\n";
  os << "Fan Beam Angle: " << convertRadiansToDegrees(m_dFanBeamAngle) << "\n";
  os << "detStart: " << m_detStart<< "\n";
  os << "detInc: " << m_detInc<< "\n";
  os << "rotStart: " << m_rotStart<< "\n";
  os << "rotInc: " << m_rotInc<< "\n";
}


bool
Projections::convertPolar (ImageFile& rIF, int iInterpolationID)
{
  unsigned int nx = rIF.nx();
  unsigned int ny = rIF.ny();
  ImageFileArray v = rIF.getArray();
  ImageFileArray vImag = rIF.getImaginaryArray();

  if (! v || nx == 0 || ny == 0)
    return false;

  Projections* pProj = this;
  if (m_geometry == Scanner::GEOMETRY_EQUIANGULAR || m_geometry == Scanner::GEOMETRY_EQUILINEAR)
    pProj = interpolateToParallel();

  Array2d<double> adView (nx, ny);
  Array2d<double> adDet (nx, ny);
  double** ppdView = adView.getArray();
  double** ppdDet = adDet.getArray();

  std::complex<double>** ppcDetValue = new std::complex<double>* [pProj->m_nView];
  int iView;
  for (iView = 0; iView < pProj->m_nView; iView++) {
    ppcDetValue[iView] = new std::complex<double> [pProj->m_nDet];
    DetectorValue* detval = pProj->getDetectorArray (iView).detValues();
    for (int iDet = 0; iDet < pProj->m_nDet; iDet++)
      ppcDetValue[iView][iDet] = std::complex<double>(detval[iDet], 0);
  }

  pProj->calcArrayPolarCoordinates (nx, ny, ppdView, ppdDet, pProj->m_nDet, 1., pProj->m_detInc);

  pProj->interpolatePolar (v, vImag, nx, ny, ppcDetValue, ppdView, ppdDet, pProj->m_nView, pProj->m_nDet,
    pProj->m_nDet, iInterpolationID);

  for (iView = 0; iView < pProj->m_nView; iView++)
    delete [] ppcDetValue[iView];
  delete [] ppcDetValue;

  if (m_geometry == Scanner::GEOMETRY_EQUIANGULAR || m_geometry == Scanner::GEOMETRY_EQUILINEAR)
    delete pProj;

  return true;
}


bool
Projections::convertFFTPolar (ImageFile& rIF, int iInterpolationID, int iZeropad)
{
#ifndef HAVE_FFTW
  rIF.arrayDataClear();
  return false;
#else
  unsigned int nx = rIF.nx();
  unsigned int ny = rIF.ny();
  ImageFileArray v = rIF.getArray();
  if (! rIF.isComplex())
    rIF.convertRealToComplex();
  ImageFileArray vImag = rIF.getImaginaryArray();

  if (! v || nx == 0 || ny == 0)
    return false;

  Projections* pProj = this;
  if (m_geometry == Scanner::GEOMETRY_EQUIANGULAR || m_geometry == Scanner::GEOMETRY_EQUILINEAR)
    pProj = interpolateToParallel();

  int iInterpDet = static_cast<int>(static_cast<double>(sqrt(nx*nx+ny*ny)));
  int iNumInterpDetWithZeros = ProcessSignal::addZeropadFactor (iInterpDet, iZeropad);
  double dProjScale = iInterpDet / (pProj->viewDiameter() * 0.05);
  double dZeropadRatio = static_cast<double>(iNumInterpDetWithZeros) / static_cast<double>(iInterpDet);

  fftw_complex* pcIn = static_cast<fftw_complex*> (fftw_malloc (sizeof(fftw_complex) * iNumInterpDetWithZeros));
  fftw_plan plan = fftw_plan_dft_1d (iNumInterpDetWithZeros, pcIn, pcIn, FFTW_FORWARD, FFTW_ESTIMATE);

  std::complex<double>** ppcDetValue = new std::complex<double>* [pProj->m_nView];
  //double dInterpScale = (pProj->m_nDet-1) / static_cast<double>(iInterpDet-1);
  double dInterpScale = pProj->m_nDet / static_cast<double>(iInterpDet);

  double dFFTScale = 1. / static_cast<double>(iInterpDet * iInterpDet);
  int iMidPoint = iInterpDet / 2;
  double dMidPoint = static_cast<double>(iInterpDet) / 2.;
  int iZerosAdded = iNumInterpDetWithZeros - iInterpDet;

  // For each view, interpolate, shift to center at origin, and FFT
  for (int iView = 0; iView < m_nView; iView++) {
    DetectorValue* detval = pProj->getDetectorArray(iView).detValues();
    LinearInterpolator<DetectorValue> projInterp (detval, pProj->m_nDet);
    for (int iDet = 0; iDet < iInterpDet; iDet++) {
      double dInterpPos = (m_nDet / 2.) + (iDet - dMidPoint) * dInterpScale;
      pcIn[iDet][0] = projInterp.interpolate (dInterpPos) * dProjScale;
      pcIn[iDet][1] = 0;
    }

    Fourier::shuffleFourierToNaturalOrder (pcIn, iInterpDet);
    if (iZerosAdded > 0) {
      for (int iDet1 = iInterpDet -1; iDet1 >= iMidPoint; iDet1--) {
        pcIn[iDet1+iZerosAdded][0] = pcIn[iDet1][0];
        pcIn[iDet1+iZerosAdded][1] = pcIn[iDet1][1];
      }
      for (int iDet2 = iMidPoint; iDet2 < iMidPoint + iZerosAdded; iDet2++)
        pcIn[iDet2][0] = pcIn[iDet2][1] = 0;
    }

    fftw_execute (plan);

    ppcDetValue[iView] = new std::complex<double> [iNumInterpDetWithZeros];
    for (int iD = 0; iD < iNumInterpDetWithZeros; iD++) {
      ppcDetValue[iView][iD] = std::complex<double> (pcIn[iD][0] * dFFTScale, pcIn[iD][1] * dFFTScale);
    }

    Fourier::shuffleFourierToNaturalOrder (ppcDetValue[iView], iNumInterpDetWithZeros);
  }
  fftw_free(pcIn) ;

  fftw_destroy_plan (plan);

  Array2d<double> adView (nx, ny);
  Array2d<double> adDet (nx, ny);
  double** ppdView = adView.getArray();
  double** ppdDet = adDet.getArray();
  pProj->calcArrayPolarCoordinates (nx, ny, ppdView, ppdDet, iNumInterpDetWithZeros, dZeropadRatio,
    pProj->m_detInc * dInterpScale);

  pProj->interpolatePolar (v, vImag, nx, ny, ppcDetValue, ppdView, ppdDet, pProj->m_nView, pProj->m_nDet,
    iNumInterpDetWithZeros, iInterpolationID);

  if (m_geometry == Scanner::GEOMETRY_EQUIANGULAR || m_geometry == Scanner::GEOMETRY_EQUILINEAR)
    delete pProj;

  for (int i = 0; i < m_nView; i++)
    delete [] ppcDetValue[i];
  delete [] ppcDetValue;

  return true;
#endif
}


void
Projections::calcArrayPolarCoordinates (unsigned int nx, unsigned int ny, double** ppdView, double** ppdDet,
                                        int iNumDetWithZeros, double dZeropadRatio, double dDetInc)
{
  double dLength = viewDiameter();
  double xMin = -dLength / 2;
  double xMax = xMin + dLength;
  double yMin = -dLength / 2;
  double yMax = yMin + dLength;
  double xCent = (xMin + xMax) / 2;
  double yCent = (yMin + yMax) / 2;

  xMin = (xMin - xCent) * dZeropadRatio + xCent;
  xMax = (xMax - xCent) * dZeropadRatio + xCent;
  yMin = (yMin - yCent) * dZeropadRatio + yCent;
  yMax = (yMax - yCent) * dZeropadRatio + yCent;

  double xInc = (xMax - xMin) / nx;     // size of cells
  double yInc = (yMax - yMin) / ny;

  double dDetCenter = (iNumDetWithZeros - 1) / 2.;      // index refering to L=0 projection
  // +1 is correct for frequency data, ndet-1 is correct for projections
  //  if (isEven (iNumDetWithZeros))
  //    dDetCenter = (iNumDetWithZeros + 0) / 2;

  // Calculates polar coordinates (view#, det#) for each point on phantom grid
  double x = xMin + xInc / 2;   // Rectang coords of center of pixel
  for (unsigned int ix = 0; ix < nx; x += xInc, ix++) {
    double y = yMin + yInc / 2;
    for (unsigned int iy = 0; iy < ny; y += yInc, iy++) {
      double r = ::sqrt (x * x + y * y);
      double phi = atan2 (y, x);

      if (phi <= -m_rotInc / 2)
        phi += TWOPI;
      if (phi >= PI - (m_rotInc / 2)) {
        phi -= PI;
        r = -r;
      }

      ppdView[ix][iy] = (phi - m_rotStart) / m_rotInc;
      ppdDet[ix][iy] = (r / dDetInc) + dDetCenter;
    }
  }
}

void
Projections::interpolatePolar (ImageFileArray& v, ImageFileArray& vImag,
     unsigned int nx, unsigned int ny, std::complex<double>** ppcDetValue, double** ppdView,
     double** ppdDet, unsigned int nView, unsigned int nDet, unsigned int nDetWithZeros, int iInterpolationID)
{
  typedef std::complex<double> complexValue;

  BilinearPolarInterpolator<complexValue>* pBilinear = NULL;
  BicubicPolyInterpolator<complexValue>* pBicubic = NULL;
  if (iInterpolationID == POLAR_INTERP_BILINEAR)
    pBilinear = new BilinearPolarInterpolator<complexValue> (ppcDetValue, nView, nDetWithZeros);
  else if (iInterpolationID == POLAR_INTERP_BICUBIC)
    pBicubic = new BicubicPolyInterpolator<complexValue> (ppcDetValue, nView, nDetWithZeros);

  for (unsigned int ix = 0; ix < ny; ix++) {
    for (unsigned int iy = 0; iy < ny; iy++) {
      if (iInterpolationID == POLAR_INTERP_NEAREST) {
        unsigned int iView = nearest<int> (ppdView[ix][iy]);
        unsigned int iDet = nearest<int> (ppdDet[ix][iy]);
        if (iView == nView)
          iView = 0;
        if (iDet >= 0 && iDet < nDetWithZeros && iView >= 0 && iView < nView) {
          v[ix][iy] = ppcDetValue[iView][iDet].real();
          if (vImag)
            vImag[ix][iy] = ppcDetValue[iView][iDet].imag();
        } else {
          v[ix][iy] = 0;
          if (vImag)
            vImag[ix][iy] = 0;
        }

      } else if (iInterpolationID == POLAR_INTERP_BILINEAR) {
        std::complex<double> vInterp = pBilinear->interpolate (ppdView[ix][iy], ppdDet[ix][iy]);
        v[ix][iy] = vInterp.real();
        if (vImag)
          vImag[ix][iy] = vInterp.imag();
      } else if (iInterpolationID == POLAR_INTERP_BICUBIC) {
        std::complex<double> vInterp = pBicubic->interpolate (ppdView[ix][iy], ppdDet[ix][iy]);
        v[ix][iy] = vInterp.real();
        if (vImag)
          vImag[ix][iy] = vInterp.imag();
      }
    }
  }
}

bool
Projections::initFromSomatomAR_STAR (int iNViews, int iNDets, unsigned char* pData, unsigned long lDataLength)
{
  init (iNViews, iNDets);
  m_geometry = Scanner::GEOMETRY_EQUIANGULAR;
  m_dFocalLength = 510;
  m_dSourceDetectorLength = 890;
  m_detInc = convertDegreesToRadians (3.06976 / 60);
  m_dFanBeamAngle = iNDets * m_detInc;
  m_detStart = -(m_dFanBeamAngle / 2);
  m_rotInc = TWOPI / static_cast<double>(iNViews);
  m_rotStart = 0;
  m_dViewDiameter = sin (m_dFanBeamAngle / 2) * m_dFocalLength * 2;

  if (! ((iNViews == 750 && lDataLength == 1560000L) || (iNViews == 950 && lDataLength == 1976000L)
                || (iNViews == 1500 && lDataLength == 3120000)))
    return false;

  double dCenter = (iNDets - 1.) / 2.; // change from (Nm+1)/2 because of 0 vs. 1 indexing
  double* pdCosScale = new double [iNDets];
  for (int i = 0; i < iNDets; i++)
    pdCosScale[i] = 1. / cos ((i - dCenter) * m_detInc);

  long lDataPos = 0;
  for (int iv = 0; iv < iNViews; iv++) {
    unsigned char* pArgBase = pData + lDataPos;
    unsigned char* p = pArgBase+0; SwapBytes4IfLittleEndian (p);
    // long lProjNumber = *reinterpret_cast<long*>(p);

    p = pArgBase+20;  SwapBytes4IfLittleEndian (p);
    long lEscale = *reinterpret_cast<long*>(p);

    p = pArgBase+28;  SwapBytes4IfLittleEndian (p);
    // long lTime = *reinterpret_cast<long*>(p);

    p = pArgBase + 4; SwapBytes4IfLittleEndian (p);
    double dAlpha = *reinterpret_cast<float*>(p) + HALFPI;

    p = pArgBase+12; SwapBytes4IfLittleEndian (p);
    // double dAlign = *reinterpret_cast<float*>(p);

    p = pArgBase + 16; SwapBytes4IfLittleEndian (p);
    // double dMaxValue = *reinterpret_cast<float*>(p);

    DetectorArray& detArray = getDetectorArray (iv);
    detArray.setViewAngle (dAlpha);
    DetectorValue* detval = detArray.detValues();

    double dViewScale = 1. / (2294.4871 * ::pow (2.0, -lEscale));
    lDataPos += 32;
    for (int id = 0; id < iNDets; id++) {
      int iV = pData[lDataPos+1] + (pData[lDataPos] << 8);
      if (iV > 32767)   // two's complement signed conversion
        iV = iV - 65536;
      detval[id] = iV * dViewScale * pdCosScale[id];
      lDataPos += 2;
    }
#if 1
    for (int k = iNDets - 2; k >= 0; k--)
      detval[k+1] = detval[k];
    detval[0] = 0;
#endif
  }

  delete pdCosScale;
  return true;
}

Projections*
Projections::interpolateToParallel () const
{
  if (m_geometry == Scanner::GEOMETRY_PARALLEL)
    return const_cast<Projections*>(this);

  int nDet = m_nDet;
  int nView = m_nView;
  Projections* pProjNew = new Projections (nView, nDet);
  pProjNew->m_geometry = Scanner::GEOMETRY_PARALLEL;
  pProjNew->m_dFocalLength = m_dFocalLength;
  pProjNew->m_dSourceDetectorLength = m_dSourceDetectorLength;
  pProjNew->m_dViewDiameter = m_dViewDiameter;
  pProjNew->m_dFanBeamAngle = m_dFanBeamAngle;
  pProjNew->m_calcTime  = 0;
  pProjNew->m_remark = m_remark;
  pProjNew->m_remark += "; Interpolate to Parallel";
  pProjNew->m_label.setLabelType (Array2dFileLabel::L_HISTORY);
  pProjNew->m_label.setLabelString (pProjNew->m_remark);
  pProjNew->m_label.setCalcTime (pProjNew->m_calcTime);
  pProjNew->m_label.setDateTime (pProjNew->m_year, pProjNew->m_month, pProjNew->m_day, pProjNew->m_hour, pProjNew->m_minute, pProjNew->m_second);

  pProjNew->m_rotStart = 0;
#ifdef CONVERT_PARALLEL_PI
  pProjNew->m_rotInc = PI / nView;;
#else
  pProjNew->m_rotInc = TWOPI / nView;
#endif
  pProjNew->m_detStart = -m_dViewDiameter / 2;
  pProjNew->m_detInc = m_dViewDiameter / nDet;
  if (isEven (nDet)) // even
    pProjNew->m_detInc = m_dViewDiameter / (nDet - 1);

  ParallelRaysums parallel (this, ParallelRaysums::THETA_RANGE_NORMALIZE_TO_TWOPI);

  double* pdThetaValuesForT = new double [pProjNew->nView()];
  double* pdRaysumsForT = new double [pProjNew->nView()];

  // interpolate to evenly spaced theta (views)
  double dDetPos = pProjNew->m_detStart;
  for (int iD = 0; iD < pProjNew->nDet(); iD++, dDetPos += pProjNew->m_detInc) {
      parallel.getThetaAndRaysumsForT (iD, pdThetaValuesForT, pdRaysumsForT);

    double dViewAngle = m_rotStart;
    int iLastFloor = -1;
    LinearInterpolator<double> interp (pdThetaValuesForT, pdRaysumsForT, pProjNew->nView(), false);
    for (int iV = 0; iV < pProjNew->nView(); iV++, dViewAngle += pProjNew->m_rotInc) {
      DetectorValue* detValues = pProjNew->getDetectorArray (iV).detValues();
      detValues[iD] = interp.interpolate (dViewAngle, &iLastFloor);
    }
  }
  delete pdThetaValuesForT;
  delete pdRaysumsForT;

  // interpolate to evenly space t (detectors)
  double* pdOriginalDetPositions = new double [pProjNew->nDet()];
  parallel.getDetPositions (pdOriginalDetPositions);

  double* pdDetValueCopy = new double [pProjNew->nDet()];
  double dViewAngle = m_rotStart;
  for (int iV = 0; iV < pProjNew->nView(); iV++, dViewAngle += pProjNew->m_rotInc) {
    DetectorArray& detArray = pProjNew->getDetectorArray (iV);
    DetectorValue* detValues = detArray.detValues();
    detArray.setViewAngle (dViewAngle);

    for (int i = 0; i < pProjNew->nDet(); i++)
      pdDetValueCopy[i] =   detValues[i];

    double dDetPos = pProjNew->m_detStart;
    int iLastFloor = -1;
    LinearInterpolator<double> interp (pdOriginalDetPositions, pdDetValueCopy, pProjNew->nDet(), false);
    for (int iD = 0; iD < pProjNew->nDet(); iD++, dDetPos += pProjNew->m_detInc)
      detValues[iD] = interp.interpolate (dDetPos, &iLastFloor);
  }
  delete pdDetValueCopy;
  delete pdOriginalDetPositions;

  return pProjNew;
}


///////////////////////////////////////////////////////////////////////////////
//
// Class ParallelRaysums
//
// Used for converting divergent beam raysums into Parallel raysums
//
///////////////////////////////////////////////////////////////////////////////

ParallelRaysums::ParallelRaysums (const Projections* pProjections, int iThetaRange)
: m_pCoordinates(NULL), m_iNumCoordinates(0), m_iNumView(pProjections->nView()), m_iNumDet(pProjections->nDet()),
  m_iThetaRange (iThetaRange)
{
  int iGeometry = pProjections->geometry();
  double dDetInc = pProjections->detInc();
  double dDetStart = pProjections->detStart();
  double dFocalLength = pProjections->focalLength();

  m_iNumCoordinates =  m_iNumView * m_iNumDet;
  m_pCoordinates = new ParallelRaysumCoordinate [m_iNumCoordinates];
  m_vecpCoordinates.reserve (m_iNumCoordinates);
  for (int i = 0; i < m_iNumCoordinates; i++)
    m_vecpCoordinates[i] = m_pCoordinates + i;

  int iCoordinate = 0;
  for (int iV = 0; iV < m_iNumView; iV++) {
    double dViewAngle = pProjections->getDetectorArray(iV).viewAngle();
    const DetectorValue* detValues = pProjections->getDetectorArray(iV).detValues();

    double dDetPos = dDetStart;
    for (int iD = 0; iD < m_iNumDet; iD++) {
      ParallelRaysumCoordinate* pC = m_vecpCoordinates[iCoordinate++];

      if (iGeometry == Scanner::GEOMETRY_PARALLEL) {
        pC->m_dTheta = dViewAngle;
        pC->m_dT = dDetPos;
      } else if (iGeometry == Scanner::GEOMETRY_EQUILINEAR) {
        double dFanAngle = atan (dDetPos / pProjections->sourceDetectorLength());
        pC->m_dTheta = dViewAngle + dFanAngle;
        pC->m_dT = dFocalLength * sin(dFanAngle);

      } else if (iGeometry == Scanner::GEOMETRY_EQUIANGULAR) {
        // fan angle is same as dDetPos
        pC->m_dTheta = dViewAngle + dDetPos;
        pC->m_dT = dFocalLength * sin (dDetPos);
      }
      if (m_iThetaRange != THETA_RANGE_UNCONSTRAINED) {
        pC->m_dTheta = normalizeAngle (pC->m_dTheta);
        if (m_iThetaRange == THETA_RANGE_FOLD_TO_PI && pC->m_dTheta >= PI) {
          pC->m_dTheta -= PI;
          pC->m_dT = -pC->m_dT;
        }
      }
      pC->m_dRaysum = detValues[iD];
      dDetPos += dDetInc;
    }
  }
}

ParallelRaysums::~ParallelRaysums()
{
  delete m_pCoordinates;
}

ParallelRaysums::CoordinateContainer&
ParallelRaysums::getSortedByTheta()
{
  if (m_vecpSortedByTheta.size() == 0) {
    m_vecpSortedByTheta.resize (m_iNumCoordinates);
    for (int i = 0; i < m_iNumCoordinates; i++)
      m_vecpSortedByTheta[i] = m_vecpCoordinates[i];
    std::sort (m_vecpSortedByTheta.begin(), m_vecpSortedByTheta.end(), ParallelRaysumCoordinate::compareByTheta);
  }

  return m_vecpSortedByTheta;
}

ParallelRaysums::CoordinateContainer&
ParallelRaysums::getSortedByT()
{
  if (m_vecpSortedByT.size() == 0) {
    m_vecpSortedByT.resize (m_iNumCoordinates);
    for (int i = 0; i < m_iNumCoordinates; i++)
      m_vecpSortedByT[i] = m_vecpCoordinates[i];
    std::sort (m_vecpSortedByT.begin(), m_vecpSortedByT.end(), ParallelRaysumCoordinate::compareByT);
  }

  return m_vecpSortedByT;
}


void
ParallelRaysums::getLimits (double* dMinT, double* dMaxT, double* dMinTheta, double* dMaxTheta) const
{
  if (m_iNumCoordinates <= 0)
    return;

  *dMinT = *dMaxT = m_vecpCoordinates[0]->m_dT;
  *dMinTheta = *dMaxTheta = m_vecpCoordinates[0]->m_dTheta;

  for (int i = 0; i < m_iNumCoordinates; i++) {
    double dT = m_vecpCoordinates[i]->m_dT;
    double dTheta = m_vecpCoordinates[i]->m_dTheta;

    if (dT < *dMinT)
      *dMinT = dT;
    else if (dT > *dMaxT)
      *dMaxT = dT;

    if (dTheta < *dMinTheta)
      *dMinTheta = dTheta;
    else if (dTheta > *dMaxTheta)
      *dMaxTheta = dTheta;
  }
}

void
ParallelRaysums::getThetaAndRaysumsForT (int iTheta, double* pTheta, double* pRaysum)
{
  const CoordinateContainer& coordsT = getSortedByT();

  int iBase = iTheta * m_iNumView;
  for (int i = 0; i < m_iNumView; i++) {
    int iPos = iBase + i;
    pTheta[i] = coordsT[iPos]->m_dTheta;
    pRaysum[i] = coordsT[iPos]->m_dRaysum;
  }
}

void
ParallelRaysums::getDetPositions (double* pdDetPos)
{
  const CoordinateContainer& coordsT = getSortedByT();

  int iPos = 0;
  for (int i = 0; i < m_iNumDet; i++) {
    pdDetPos[i] = coordsT[iPos]->m_dT;
    iPos += m_iNumView;
  }
}