File: filter.cpp

package info (click to toggle)
ctsim 6.0.2-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 6,868 kB
  • sloc: cpp: 26,967; sh: 7,782; ansic: 1,256; perl: 296; makefile: 148
file content (605 lines) | stat: -rw-r--r-- 16,279 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*****************************************************************************
** File IDENTIFICATION
**
**     Name:                   filter.cpp
**     Purpose:                Routines for signal-procesing filters
**     Progammer:              Kevin Rosenberg
**     Date Started:           Aug 1984
**
**  This is part of the CTSim program
**  Copyright (c) 1983-2009 Kevin Rosenberg
**
**  This program is free software; you can redistribute it and/or modify
**  it under the terms of the GNU General Public License (version 2) as
**  published by the Free Software Foundation.
**
**  This program is distributed in the hope that it will be useful,
**  but WITHOUT ANY WARRANTY; without even the implied warranty of
**  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
**  GNU General Public License for more details.
**
**  You should have received a copy of the GNU General Public License
**  along with this program; if not, write to the Free Software
**  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
******************************************************************************/

#include "ct.h"

int SignalFilter::N_INTEGRAL=500;  //static member

const int SignalFilter::FILTER_INVALID = -1 ;
const int SignalFilter::FILTER_ABS_BANDLIMIT = 0;       // filter times |x|
const int SignalFilter::FILTER_ABS_G_HAMMING = 1;
const int SignalFilter::FILTER_ABS_HANNING = 2;
const int SignalFilter::FILTER_ABS_COSINE = 3;
const int SignalFilter::FILTER_ABS_SINC = 4;
const int SignalFilter::FILTER_SHEPP = 5;
const int SignalFilter::FILTER_BANDLIMIT = 6;
const int SignalFilter::FILTER_SINC = 7;
const int SignalFilter::FILTER_G_HAMMING = 8;
const int SignalFilter::FILTER_HANNING = 9;
const int SignalFilter::FILTER_COSINE = 10;
const int SignalFilter::FILTER_TRIANGLE = 11;

const int SignalFilter::s_iReconstructFilterCount = 4;

const char* const SignalFilter::s_aszFilterName[] = {
  "abs_bandlimit",
  "abs_hamming",
  "abs_hanning",
  "abs_cosine",
  "shepp",
  "abs_sinc",
  "bandlimit",
  "sinc",
  "hamming",
  "hanning",
  "cosine",
  "triangle"
};

const char* const SignalFilter::s_aszFilterTitle[] = {
  "Abs(w) * Bandlimit",
  "Abs(w) * Hamming",
  "Abs(w) * Hanning",
  "Abs(w) * Cosine",
  "Shepp",
  "Abs(w) * Sinc",
  "Bandlimit",
  "Sinc",
  "Hamming",
  "Hanning",
  "Cosine",
  "Triangle"
};

const int SignalFilter::s_iFilterCount = sizeof(s_aszFilterName) / sizeof(const char*);


const int SignalFilter::DOMAIN_INVALID = -1;
const int SignalFilter::DOMAIN_FREQUENCY = 0;
const int SignalFilter::DOMAIN_SPATIAL = 1;

const char* const SignalFilter::s_aszDomainName[] = {
  "frequency",
  "spatial",
};

const char* const SignalFilter::s_aszDomainTitle[] = {
  "Frequency",
  "Spatial",
};

const int SignalFilter::s_iDomainCount = sizeof(s_aszDomainName) / sizeof(const char*);


/* NAME
*   SignalFilter::SignalFilter     Construct a signal
*
* SYNOPSIS
*   f = SignalFilter (filt_type, bw, filterMin, filterMax, n, param, domain, analytic)
*   double f            Generated filter vector
*   int filt_type       Type of filter wanted
*   double bw           Bandwidth of filter
*   double filterMin, filterMax Filter limits
*   int nFilterPoints   Number of points in signal
*   double param        General input parameter to filters
*   int domain          FREQUENCY or SPATIAL domain wanted
*/

SignalFilter::SignalFilter (const char* szFilterName, double dFilterMinimum, double dFilterMaximum, int nFilterPoints, double dBandwidth, double dFilterParam, const char* szDomainName)
: m_adFilter(NULL), m_fail(false)
{
  m_idFilter = convertFilterNameToID (szFilterName);
  if (m_idFilter == FILTER_INVALID) {
    m_fail = true;
    m_failMessage = "Invalid Filter name ";
    m_failMessage += szFilterName;
    return;
  }
  m_idDomain = convertDomainNameToID (szDomainName);
  if (m_idDomain == DOMAIN_INVALID) {
    m_fail = true;
    m_failMessage = "Invalid domain name ";
    m_failMessage += szDomainName;
    return;
  }
  init (m_idFilter, dFilterMinimum, dFilterMaximum, nFilterPoints, dBandwidth, dFilterParam, m_idDomain);
}

SignalFilter::SignalFilter (const int idFilter, double dFilterMinimum, double dFilterMaximum, int nFilterPoints, double dBandwidth, double dFilterParam, const int idDomain)
: m_adFilter(NULL), m_fail(false)
{
  init (idFilter, dFilterMinimum, dFilterMaximum, nFilterPoints, dBandwidth, dFilterParam, idDomain);
}

SignalFilter::SignalFilter (const char* szFilterName, const char* szDomainName, double dBandwidth, double dFilterParam)
: m_adFilter(NULL), m_fail(false)
{
  m_nFilterPoints = 0;
  m_dBandwidth = dBandwidth;
  m_dFilterParam = dFilterParam;
  m_idFilter = convertFilterNameToID (szFilterName);
  if (m_idFilter == FILTER_INVALID) {
    m_fail = true;
    m_failMessage = "Invalid Filter name ";
    m_failMessage += szFilterName;
    return;
  }
  m_idDomain = convertDomainNameToID (szDomainName);
  if (m_idDomain == DOMAIN_INVALID) {
    m_fail = true;
    m_failMessage = "Invalid domain name ";
    m_failMessage += szDomainName;
    return;
  }
}

void
SignalFilter::init (const int idFilter, double dFilterMinimum, double dFilterMaximum, int nFilterPoints, double dBandwidth, double dFilterParam, const int idDomain)
{
  m_idFilter = idFilter;
  m_idDomain = idDomain;
  if (m_idFilter == FILTER_INVALID || m_idDomain == DOMAIN_INVALID) {
    m_fail = true;
    return;
  }
  if (nFilterPoints < 2) {
    m_fail = true;
    m_failMessage = "Number of filter points ";
    m_failMessage += nFilterPoints;
    m_failMessage = " less than 2";
    return;
  }

  m_nameFilter = convertFilterIDToName (m_idFilter);
  m_nameDomain = convertDomainIDToName (m_idDomain);
  m_nFilterPoints = nFilterPoints;
  m_dFilterParam = dFilterParam;
  m_dBandwidth = dBandwidth;
  m_dFilterMin = dFilterMinimum;
  m_dFilterMax = dFilterMaximum;

  m_dFilterInc = (m_dFilterMax - m_dFilterMin) / (m_nFilterPoints - 1);
  m_adFilter = new double [m_nFilterPoints];

  if (m_idDomain == DOMAIN_FREQUENCY)
    createFrequencyFilter (m_adFilter);
  else if (m_idDomain == DOMAIN_SPATIAL)
    createSpatialFilter (m_adFilter);
}


SignalFilter::~SignalFilter (void)
{
  delete [] m_adFilter;
}

void
SignalFilter::createFrequencyFilter (double* adFilter) const
{
  double x;
  int i;
  for (x = m_dFilterMin, i = 0; i < m_nFilterPoints; x += m_dFilterInc, i++)
    adFilter[i] = frequencyResponse (x);
}


void
SignalFilter::createSpatialFilter (double* adFilter) const
{
  if (m_idFilter == FILTER_SHEPP) {
    double a = 2 * m_dBandwidth;
    double c = - 4. / (a * a);
    int center = (m_nFilterPoints - 1) / 2;
    int sidelen = center;
    m_adFilter[center] = 4. / (a * a);

    for (int i = 1; i <= sidelen; i++ )
      m_adFilter [center + i] = m_adFilter [center - i] = c / (4 * (i * i) - 1);
  } else {
    double x = m_dFilterMin;
    for (int i = 0; i < m_nFilterPoints; i++, x += m_dFilterInc) {
      if (haveAnalyticSpatial(m_idFilter))
        m_adFilter[i] = spatialResponseAnalytic (x);
      else
        m_adFilter[i] = spatialResponseCalc (x);
    }
  }
}

int
SignalFilter::convertFilterNameToID (const char *filterName)
{
  int filterID = FILTER_INVALID;

  for (int i = 0; i < s_iFilterCount; i++) {
    if (strcasecmp (filterName, s_aszFilterName[i]) == 0) {
      filterID = i;
      break;
    }
  }

    return (filterID);
}

const char *
SignalFilter::convertFilterIDToName (const int filterID)
{
  static const char *name = "";

  if (filterID >= 0 && filterID < s_iFilterCount)
    return (s_aszFilterName [filterID]);

  return (name);
}

const char *
SignalFilter::convertFilterIDToTitle (const int filterID)
{
  static const char *title = "";

  if (filterID >= 0 && filterID < s_iFilterCount) {
    return (s_aszFilterTitle [filterID]);
  }
  return (title);
}

int
SignalFilter::convertDomainNameToID (const char* const domainName)
{
  int dID = DOMAIN_INVALID;

  for (int i = 0; i < s_iDomainCount; i++) {
    if (strcasecmp (domainName, s_aszDomainName[i]) == 0) {
      dID = i;
      break;
    }
  }
  return (dID);
}

const char *
SignalFilter::convertDomainIDToName (const int domainID)
{
  static const char *name = "";

  if (domainID >= 0 && domainID < s_iDomainCount)
    return (s_aszDomainName [domainID]);

  return (name);
}

const char *
SignalFilter::convertDomainIDToTitle (const int domainID)
{
  static const char *title = "";

  if (domainID >= 0 && domainID < s_iDomainCount)
    return (s_aszDomainTitle [domainID]);

  return (title);
}


double
SignalFilter::response (double x)
{
  double response = 0;

  if (m_idDomain == DOMAIN_SPATIAL)
    response = spatialResponse (m_idFilter, m_dBandwidth, x, m_dFilterParam);
  else if (m_idDomain == DOMAIN_FREQUENCY)
    response = frequencyResponse (m_idFilter, m_dBandwidth, x, m_dFilterParam);

  return (response);
}


double
SignalFilter::spatialResponse (int filterID, double bw, double x, double param)
{
  if (haveAnalyticSpatial(filterID))
    return spatialResponseAnalytic (filterID, bw, x, param);
  else
    return spatialResponseCalc (filterID, bw, x, param, N_INTEGRAL);
}

void
SignalFilter::copyFilterData (double* pdFilter, const int iStart, const int nPoints) const
{
  int iFirst = clamp (iStart, 0, m_nFilterPoints - 1);
  int iLast = clamp (iFirst + nPoints - 1, 0, m_nFilterPoints - 1);

  for (int i = iFirst; i <= iLast; i++)
    pdFilter[i - iFirst] = m_adFilter[i];
}

/* NAME
*   filter_spatial_response_calc        Calculate filter by discrete inverse fourier
*                                       transform of filters's frequency
*                                       response
*
* SYNOPSIS
*   y = filter_spatial_response_calc (filt_type, x, m_bw, param, n)
*   double y                    Filter's response in spatial domain
*   int filt_type               Type of filter (definitions in ct.h)
*   double x                    Spatial position to evaluate filter
*   double m_bw                 Bandwidth of window
*   double param                General parameter for various filters
*   int n                       Number of points to calculate integrations
*/

double
SignalFilter::spatialResponseCalc (double x) const
{
  return (spatialResponseCalc (m_idFilter, m_dBandwidth, x, m_dFilterParam, N_INTEGRAL));
}

double
SignalFilter::spatialResponseCalc (int filterID, double bw, double x, double param, int n)
{
  double zmin, zmax;

  if (filterID == FILTER_TRIANGLE) {
    zmin = 0;
    zmax = bw;
  } else {
    zmin = 0;
    zmax = bw / 2;
  }
  double zinc = (zmax - zmin) / (n - 1);

  double z = zmin;
  double* q = new double [n];
  for (int i = 0; i < n; i++, z += zinc)
    q[i] = frequencyResponse (filterID, bw, z, param) * cos (TWOPI * z * x);

  double y = 2 * integrateSimpson (zmin, zmax, q, n);
  delete q;

  return (y);
}


/* NAME
*    filter_frequency_response                  Return filter frequency response
*
* SYNOPSIS
*    h = filter_frequency_response (filt_type, u, m_bw, param)
*    double h                   Filters frequency response at u
*    int filt_type              Type of filter
*    double u                   Frequency to evaluate filter at
*    double m_bw                        Bandwidth of filter
*    double param               General input parameter for various filters
*/

double
SignalFilter::frequencyResponse (double u) const
{
  return frequencyResponse (m_idFilter, m_dBandwidth, u, m_dFilterParam);
}


double
SignalFilter::frequencyResponse (int filterID, double bw, double u, double param)
{
  double q;
  double au = fabs (u);
  double abw = fabs (bw);

  switch (filterID) {
  case FILTER_BANDLIMIT:
    if (au >= (abw / 2) + F_EPSILON)
      q = 0.;
    else
      q = 1;
    break;
  case FILTER_ABS_BANDLIMIT:
    if (au >= (abw / 2) + F_EPSILON)
      q = 0.;
    else
      q = au;
    break;
  case FILTER_TRIANGLE:
    if (au >= (abw / 2) + F_EPSILON)
      q = 0;
    else
      q = 1 - au / abw;
    break;
  case FILTER_COSINE:
    if (au >= (abw / 2) + F_EPSILON)
      q = 0;
    else
      q = cos(PI * au / abw);
    break;
  case FILTER_ABS_COSINE:
    if (au >= (abw / 2) + F_EPSILON)
      q = 0;
    else
      q = au * cos(PI * au / abw);
    break;
  case FILTER_SINC:
    q = abw * sinc (PI * abw * au, 1.);
    break;
  case FILTER_ABS_SINC:
    if (au >= (abw / 2) + F_EPSILON)
      q = 0;
    else
      q = au * abw * sinc (PI * abw * au, 1.);
    break;
  case FILTER_HANNING:
    param = 0.5;
    // follow through to G_HAMMING
  case FILTER_G_HAMMING:
    if (au >= (abw / 2) + F_EPSILON)
      q = 0;
    else
      q = param + (1 - param) * cos (TWOPI * au / abw);
    break;
  case FILTER_ABS_HANNING:
    param = 0.5;
    // follow through to ABS_G_HAMMING
  case FILTER_ABS_G_HAMMING:
    if (au >= (abw / 2) + F_EPSILON)
      q = 0;
    else
      q = au * (param + (1 - param) * cos(TWOPI * au / abw));
    break;
  default:
    q = 0;
    sys_error (ERR_WARNING, "Frequency response for filter %d not implemented [filter_frequency_response]", filterID);
    break;
  }

  return (q);
}



/* NAME
*   filter_spatial_response_analytic                    Calculate filter by analytic inverse fourier
*                               transform of filters's frequency
*                               response
*
* SYNOPSIS
*   y = filter_spatial_response_analytic (filt_type, x, m_bw, param)
*   double y                    Filter's response in spatial domain
*   int filt_type               Type of filter (definitions in ct.h)
*   double x                    Spatial position to evaluate filter
*   double m_bw                 Bandwidth of window
*   double param                General parameter for various filters
*/

double
SignalFilter::spatialResponseAnalytic (double x) const
{
  return spatialResponseAnalytic (m_idFilter, m_dBandwidth, x, m_dFilterParam);
}

const bool
SignalFilter::haveAnalyticSpatial (int filterID)
{
  bool haveAnalytic = false;

  switch (filterID) {
  case FILTER_BANDLIMIT:
  case FILTER_TRIANGLE:
  case FILTER_COSINE:
  case FILTER_G_HAMMING:
  case FILTER_HANNING:
  case FILTER_ABS_BANDLIMIT:
  case FILTER_ABS_COSINE:
  case FILTER_ABS_G_HAMMING:
  case FILTER_ABS_HANNING:
  case FILTER_SHEPP:
  case FILTER_SINC:
    haveAnalytic = true;
    break;
  default:
    break;
  }

  return (haveAnalytic);
}

double
SignalFilter::spatialResponseAnalytic (int filterID, double bw, double x, double param)
{
  double q, temp;
  double u = TWOPI * x;
  double w = bw / 2;
  double b = PI / bw;
  double b2 = TWOPI / bw;

  switch (filterID) {
  case FILTER_BANDLIMIT:
    q = bw * sinc(u * w, 1.0);
    break;
  case FILTER_TRIANGLE:
    temp = sinc (u * w, 1.0);
    q = bw * temp * temp;
    break;
  case FILTER_COSINE:
    q = sinc(b-u,w) + sinc(b+u,w);
    break;
  case FILTER_HANNING:
    param = 0.5;
    // follow through to G_HAMMING
  case FILTER_G_HAMMING:
    q = 2 * param * sin(u*w)/u + (1-param) * (sinc(b2-u, w) + sinc(b2+u, w));
    break;
  case FILTER_ABS_BANDLIMIT:
    q = 2 * integral_abscos (u, w);
    break;
  case FILTER_ABS_COSINE:
    q = integral_abscos(b-u,w) + integral_abscos(b+u,w);
    break;
  case FILTER_ABS_HANNING:
    param = 0.5;
    // follow through to ABS_G_HAMMING
  case FILTER_ABS_G_HAMMING:
    q = 2 * param * integral_abscos(u,w) +
      (1-param)*(integral_abscos(u-b2,w)+integral_abscos(u+b2,w));
    break;
  case FILTER_SHEPP:
    if (fabs (u) < 1E-7)
      q = 4. / (PI * bw * bw);
    else
      q = fabs ((2 / bw) * sin (u * w)) * sinc (u * w, 1.) * sinc (u * w, 1.);
    break;
  case FILTER_SINC:
    if (fabs (x) < bw / 2)
      q = 1.;
    else
      q = 0.;
    break;
  case FILTER_ABS_SINC:
  default:
    sys_error (ERR_WARNING, "Analytic filter type %d not implemented [filter_spatial_response_analytic]", filterID);
    q = 0;
    break;
  }

  return (q);
}



// Functions that are inline in filter.h


//  sinc                        Return sin(x)/x function
//   v = sinc (x, mult)
// Calculates sin(x * mult) / x;

//  integral_abscos     Returns integral of u*cos(u)
//
//   q = integral_abscos (u, w)
//   double q                   Integral value
//   double u                   Integration variable
//   double w                   Upper integration boundary
// Returns the value of integral of u*cos(u)*dV for V = 0 to w