1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
|
/*****************************************************************************
** FILE IDENTIFICATION
**
** Name: fourier.cpp
** Purpose: Fourier transform functions
** Programmer: Kevin Rosenberg
** Date Started: Dec 2000
**
** This is part of the CTSim program
** Copyright (c) 1983-2009 Kevin Rosenberg
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License (version 2) as
** published by the Free Software Foundation.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
******************************************************************************/
#include "ct.h"
void
Fourier::shuffleFourierToNaturalOrder (ImageFile& im)
{
ImageFileArray vReal = im.getArray();
ImageFileArray vImag = im.getImaginaryArray();
unsigned int ix, iy;
unsigned int nx = im.nx();
unsigned int ny = im.ny();
// shuffle each column
for (ix = 0; ix < nx; ix++) {
Fourier::shuffleFourierToNaturalOrder (vReal[ix], ny);
if (im.isComplex())
Fourier::shuffleFourierToNaturalOrder (vImag[ix], ny);
}
// shuffle each row
float* pRow = new float [nx];
for (iy = 0; iy < ny; iy++) {
for (ix = 0; ix < nx; ix++)
pRow[ix] = vReal[ix][iy];
Fourier::shuffleFourierToNaturalOrder (pRow, nx);
for (ix = 0; ix < nx; ix++)
vReal[ix][iy] = pRow[ix];
if (im.isComplex()) {
for (ix = 0; ix < nx; ix++)
pRow[ix] = vImag[ix][iy];
Fourier::shuffleFourierToNaturalOrder (pRow, nx);
for (ix = 0; ix < nx; ix++)
vImag[ix][iy] = pRow[ix];
}
}
delete pRow;
}
void
Fourier::shuffleNaturalToFourierOrder (ImageFile& im)
{
ImageFileArray vReal = im.getArray();
ImageFileArray vImag = im.getImaginaryArray();
unsigned int ix, iy;
unsigned int nx = im.nx();
unsigned int ny = im.ny();
// shuffle each x column
for (ix = 0; ix < nx; ix++) {
Fourier::shuffleNaturalToFourierOrder (vReal[ix], ny);
if (im.isComplex())
Fourier::shuffleNaturalToFourierOrder (vImag[ix], ny);
}
// shuffle each y row
float* pRow = new float [nx];
for (iy = 0; iy < ny; iy++) {
for (ix = 0; ix < nx; ix++)
pRow[ix] = vReal[ix][iy];
Fourier::shuffleNaturalToFourierOrder (pRow, nx);
for (ix = 0; ix < nx; ix++)
vReal[ix][iy] = pRow[ix];
if (im.isComplex()) {
for (ix = 0; ix < nx; ix++)
pRow[ix] = vImag[ix][iy];
Fourier::shuffleNaturalToFourierOrder (pRow, nx);
for (ix = 0; ix < nx; ix++)
vImag[ix][iy] = pRow[ix];
}
}
delete [] pRow;
}
#ifdef HAVE_FFTW
void Fourier::shuffleNaturalToFourierOrder (fftw_complex* pVector, const int n)
{
fftw_complex* pTemp = static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex) * n));
int i;
if (isOdd(n)) { // Odd
int iHalfN = (n - 1) / 2;
pTemp[0][0] = pVector[iHalfN][0];
pTemp[0][1] = pVector[iHalfN][1];
for (i = 0; i < iHalfN; i++) {
pTemp[i + 1][0] = pVector[i + 1 + iHalfN][0];
pTemp[i + 1][1] = pVector[i + 1 + iHalfN][1];
}
for (i = 0; i < iHalfN; i++) {
pTemp[i + iHalfN + 1][0] = pVector[i][0];
pTemp[i + iHalfN + 1][1] = pVector[i][1];
}
} else { // Even
int iHalfN = n / 2;
pTemp[0][0] = pVector[iHalfN][0];
pTemp[0][1] = pVector[iHalfN][1];
for (i = 0; i < iHalfN - 1; i++) {
pTemp[i + 1][0] = pVector[i + iHalfN + 1][0];
pTemp[i + 1][1] = pVector[i + iHalfN + 1][1];
}
for (i = 0; i < iHalfN; i++) {
pTemp[i + iHalfN][0] = pVector[i][0];
pTemp[i + iHalfN][1] = pVector[i][1];
}
}
for (i = 0; i < n; i++) {
pVector[i][0] = pTemp[i][0];
pVector[i][1] = pTemp[i][1];
}
fftw_free(pTemp);
}
void Fourier::shuffleFourierToNaturalOrder (fftw_complex* pVector, const int n)
{
fftw_complex* pTemp = static_cast<fftw_complex*>(fftw_malloc(sizeof(fftw_complex) * n));
int i;
if (isOdd(n)) { // Odd
int iHalfN = (n - 1) / 2;
pTemp[iHalfN][0] = pVector[0][0];
pTemp[iHalfN][1] = pVector[0][1];
for (i = 0; i < iHalfN; i++) {
pTemp[i + 1 + iHalfN][0] = pVector[i + 1][0];
pTemp[i + 1 + iHalfN][1] = pVector[i + 1][1];
}
for (i = 0; i < iHalfN; i++) {
pTemp[i][0] = pVector[i + iHalfN + 1][0];
pTemp[i][1] = pVector[i + iHalfN + 1][1];
}
} else { // Even
int iHalfN = n / 2;
pTemp[iHalfN][0] = pVector[0][0];
pTemp[iHalfN][1] = pVector[0][1];
for (i = 0; i < iHalfN; i++) {
pTemp[i][0] = pVector[i + iHalfN][0];
pTemp[i][1] = pVector[i + iHalfN][1];
}
for (i = 0; i < iHalfN - 1; i++) {
pTemp[i + iHalfN + 1][0] = pVector[i+1][0];
pTemp[i + iHalfN + 1][1] = pVector[i+1][1];
}
}
for (i = 0; i < n; i++) {
pVector[i][0] = pTemp[i][0];
pVector[i][1] = pTemp[i][1];
}
fftw_free(pTemp);
}
#endif
|