1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
|
/*****************************************************************************
** FILE IDENTIFICATION
**
** Name: scanner.cpp
** Purpose: Classes for CT scanner
** Programmer: Kevin Rosenberg
** Date Started: 1984
**
** This is part of the CTSim program
** Copyright (c) 1983-2009 Kevin Rosenberg
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License (version 2) as
** published by the Free Software Foundation.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
******************************************************************************/
#include "ct.h"
const int Scanner::GEOMETRY_INVALID = -1;
const int Scanner::GEOMETRY_PARALLEL = 0;
const int Scanner::GEOMETRY_EQUIANGULAR = 1;
const int Scanner::GEOMETRY_EQUILINEAR = 2;
const int Scanner::GEOMETRY_LINOGRAM = 3;
const char* const Scanner::s_aszGeometryName[] =
{
"parallel",
"equiangular",
"equilinear",
"linogram",
};
const char* const Scanner::s_aszGeometryTitle[] =
{
"Parallel",
"Equiangular",
"Equilinear",
"Linogram",
};
const int Scanner::s_iGeometryCount = sizeof(s_aszGeometryName) / sizeof(const char*);
// NAME
// DetectorArray Construct a DetectorArray
DetectorArray::DetectorArray (const int nDet)
{
m_nDet = nDet;
m_detValues = new DetectorValue [m_nDet];
}
// NAME
// ~DetectorArray Free memory allocated to a detector array
DetectorArray::~DetectorArray (void)
{
delete [] m_detValues;
}
/* NAME
* Scanner::Scanner Construct a user specified detector structure
*
* SYNOPSIS
* Scanner (phm, nDet, nView, nSample)
* Phantom& phm PHANTOM that we are making detector for
* int geomety Geometry of detector
* int nDet Number of detector along detector array
* int nView Number of rotated views
* int nSample Number of rays per detector
*/
Scanner::Scanner (const Phantom& phm, const char* const geometryName,
int nDet, int nView, int offsetView,
int nSample, const double rot_anglen,
const double dFocalLengthRatio,
const double dCenterDetectorRatio,
const double dViewRatio, const double dScanRatio)
{
m_fail = false;
m_idGeometry = convertGeometryNameToID (geometryName);
if (m_idGeometry == GEOMETRY_INVALID) {
m_fail = true;
m_failMessage = "Invalid geometry name ";
m_failMessage += geometryName;
return;
}
if (nView < 1 || nDet < 1) {
m_fail = true;
m_failMessage = "nView & nDet must be greater than 0";
return;
}
if (nSample < 1)
m_nSample = 1;
m_nDet = nDet;
m_nView = nView;
m_iOffsetView = offsetView;
m_nSample = nSample;
m_dFocalLengthRatio = dFocalLengthRatio;
m_dCenterDetectorRatio = dCenterDetectorRatio;
m_dViewRatio = dViewRatio;
m_dScanRatio = dScanRatio;
m_dViewDiameter = phm.getDiameterBoundaryCircle() * m_dViewRatio;
m_dFocalLength = (m_dViewDiameter / 2) * m_dFocalLengthRatio;
m_dCenterDetectorLength = (m_dViewDiameter / 2) * m_dCenterDetectorRatio;
m_dSourceDetectorLength = m_dFocalLength + m_dCenterDetectorLength;
m_dScanDiameter = m_dViewDiameter * m_dScanRatio;
m_dXCenter = phm.xmin() + (phm.xmax() - phm.xmin()) / 2;
m_dYCenter = phm.ymin() + (phm.ymax() - phm.ymin()) / 2;
m_rotLen = rot_anglen;
m_rotInc = m_rotLen / m_nView;
if (m_idGeometry == GEOMETRY_PARALLEL) {
m_dFanBeamAngle = 0;
m_detLen = m_dScanDiameter;
m_detStart = -m_detLen / 2;
m_detInc = m_detLen / m_nDet;
double dDetectorArrayEndOffset = 0;
// For even number of detectors, make detInc slightly larger so that center lies
// at nDet/2. Also, extend detector array by one detInc so that all of the phantom is scanned
if (isEven (m_nDet)) { // Adjust for Even number of detectors
m_detInc = m_detLen / (m_nDet - 1); // center detector = (nDet/2)
dDetectorArrayEndOffset = m_detInc;
}
double dHalfDetLen = m_detLen / 2;
m_initPos.xs1 = m_dXCenter - dHalfDetLen;
m_initPos.ys1 = m_dYCenter + m_dFocalLength;
m_initPos.xs2 = m_dXCenter + dHalfDetLen + dDetectorArrayEndOffset;
m_initPos.ys2 = m_dYCenter + m_dFocalLength;
m_initPos.xd1 = m_dXCenter - dHalfDetLen;
m_initPos.yd1 = m_dYCenter - m_dCenterDetectorLength;
m_initPos.xd2 = m_dXCenter + dHalfDetLen + dDetectorArrayEndOffset;
m_initPos.yd2 = m_dYCenter - m_dCenterDetectorLength;
m_initPos.angle = m_iOffsetView * m_rotInc;
m_detLen += dDetectorArrayEndOffset;
} else if (m_idGeometry == GEOMETRY_EQUILINEAR) {
if (m_dScanDiameter / 2 >= m_dFocalLength) {
m_fail = true;
m_failMessage = "Invalid geometry: Focal length must be larger than scan length";
return;
}
const double dAngle = asin ((m_dScanDiameter / 2) / m_dFocalLength);
const double dHalfDetLen = m_dSourceDetectorLength * tan (dAngle);
m_detLen = dHalfDetLen * 2;
m_detStart = -dHalfDetLen;
m_detInc = m_detLen / m_nDet;
double dDetectorArrayEndOffset = 0;
if (isEven (m_nDet)) { // Adjust for Even number of detectors
m_detInc = m_detLen / (m_nDet - 1); // center detector = (nDet/2)
dDetectorArrayEndOffset = m_detInc;
m_detLen += dDetectorArrayEndOffset;
}
m_dFanBeamAngle = dAngle * 2;
m_initPos.xs1 = m_dXCenter;
m_initPos.ys1 = m_dYCenter + m_dFocalLength;
m_initPos.xs2 = m_dXCenter;
m_initPos.ys2 = m_dYCenter + m_dFocalLength;
m_initPos.xd1 = m_dXCenter - dHalfDetLen;
m_initPos.yd1 = m_dYCenter - m_dCenterDetectorLength;
m_initPos.xd2 = m_dXCenter + dHalfDetLen + dDetectorArrayEndOffset;
m_initPos.yd2 = m_dYCenter - m_dCenterDetectorLength;
m_initPos.angle = m_iOffsetView * m_rotInc;
} else if (m_idGeometry == GEOMETRY_EQUIANGULAR) {
if (m_dScanDiameter / 2 > m_dFocalLength) {
m_fail = true;
m_failMessage = "Invalid geometry: Focal length must be larger than scan length";
return;
}
const double dAngle = asin ((m_dScanDiameter / 2) / m_dFocalLength);
m_detLen = 2 * dAngle;
m_detStart = -dAngle;
m_detInc = m_detLen / m_nDet;
double dDetectorArrayEndOffset = 0;
if (isEven (m_nDet)) { // Adjust for Even number of detectors
m_detInc = m_detLen / (m_nDet - 1); // center detector = (nDet/2)
dDetectorArrayEndOffset = m_detInc;
}
// adjust for center-detector length
double dA1 = acos ((m_dScanDiameter / 2) / m_dCenterDetectorLength);
double dAngularScale = 2 * (HALFPI + dAngle - dA1) / m_detLen;
m_dAngularDetLen = dAngularScale * (m_detLen + dDetectorArrayEndOffset);
m_dAngularDetIncrement = dAngularScale * m_detInc;
m_initPos.dAngularDet = -m_dAngularDetLen / 2;
m_dFanBeamAngle = dAngle * 2;
m_initPos.angle = m_iOffsetView * m_rotInc;
m_initPos.xs1 = m_dXCenter;
m_initPos.ys1 = m_dYCenter + m_dFocalLength;;
m_initPos.xs2 = m_dXCenter;
m_initPos.ys2 = m_dYCenter + m_dFocalLength;
m_detLen += dDetectorArrayEndOffset;
}
// Calculate incrementatal rotation matrix
GRFMTX_2D temp;
xlat_mtx2 (m_rotmtxIncrement, -m_dXCenter, -m_dYCenter);
rot_mtx2 (temp, m_rotInc);
mult_mtx2 (m_rotmtxIncrement, temp, m_rotmtxIncrement);
xlat_mtx2 (temp, m_dXCenter, m_dYCenter);
mult_mtx2 (m_rotmtxIncrement, temp, m_rotmtxIncrement);
}
Scanner::~Scanner (void)
{
}
const char*
Scanner::convertGeometryIDToName (const int geomID)
{
const char *name = "";
if (geomID >= 0 && geomID < s_iGeometryCount)
return (s_aszGeometryName[geomID]);
return (name);
}
const char*
Scanner::convertGeometryIDToTitle (const int geomID)
{
const char *title = "";
if (geomID >= 0 && geomID < s_iGeometryCount)
return (s_aszGeometryName[geomID]);
return (title);
}
int
Scanner::convertGeometryNameToID (const char* const geomName)
{
int id = GEOMETRY_INVALID;
for (int i = 0; i < s_iGeometryCount; i++) {
if (strcasecmp (geomName, s_aszGeometryName[i]) == 0) {
id = i;
break;
}
}
return (id);
}
/* NAME
* collectProjections Calculate projections for a Phantom
*
* SYNOPSIS
* collectProjections (proj, phm, start_view, nView, bStoreViewPos, trace)
* Projectrions& proj Projection storage
* Phantom& phm Phantom for which we collect projections
* bool bStoreViewPos TRUE then storage proj at normal view position
* int trace Trace level
*/
void
Scanner::collectProjections (Projections& proj, const Phantom& phm, const int trace, SGP* pSGP)
{
collectProjections (proj, phm, m_startView, proj.nView(), m_iOffsetView, true, trace, pSGP);
}
void
Scanner::collectProjections (Projections& proj, const Phantom& phm, const int iStartView,
const int iNumViews, const int iOffsetView, bool bStoreAtViewPosition,
const int trace, SGP* pSGP)
{
int iStorageOffset = (bStoreAtViewPosition ? iStartView : 0);
collectProjections (proj, phm, iStartView, iNumViews, iOffsetView, iStorageOffset, trace, pSGP);
}
static void mtx2_offset_rot (GRFMTX_2D m, double angle, double x, double y) {
GRFMTX_2D temp;
xlat_mtx2 (m, -x, -y);
rot_mtx2 (temp, angle);
mult_mtx2 (m, temp, m);
xlat_mtx2 (temp, x, y);
mult_mtx2 (m, temp, m);
}
void
Scanner::collectProjections (Projections& proj, const Phantom& phm, const int iStartView,
const int iNumViews, const int iOffsetView, int iStorageOffset,
const int trace, SGP* pSGP)
{
m_trace = trace;
double start_angle = (iStartView + iOffsetView) * proj.rotInc();
#ifdef HAVE_OPENMP
#pragma omp parallel for
#endif
for (int iView = 0; iView < iNumViews; iView++) {
double viewAngle = start_angle + (iView * proj.rotInc());
// With OpenMP, need to calculate source and detector positions at each view
GRFMTX_2D rotmtx;
mtx2_offset_rot (rotmtx, viewAngle, m_dXCenter, m_dYCenter);
double xd1=0, yd1=0, xd2=0, yd2=0;
if (m_idGeometry != GEOMETRY_EQUIANGULAR) {
xd1 = m_initPos.xd1; yd1 = m_initPos.yd1;
xd2 = m_initPos.xd2; yd2 = m_initPos.yd2;
xform_mtx2 (rotmtx, xd1, yd1); // rotate detector endpoints
xform_mtx2 (rotmtx, xd2, yd2); // to initial view_angle
}
double xs1 = m_initPos.xs1, ys1 = m_initPos.ys1;
double xs2 = m_initPos.xs2, ys2 = m_initPos.ys2;
xform_mtx2 (rotmtx, xs1, ys1); // rotate source endpoints to
xform_mtx2 (rotmtx, xs2, ys2); // initial view angle
int iStoragePosition = iView + iStorageOffset;
DetectorArray& detArray = proj.getDetectorArray( iStoragePosition );
#ifdef HAVE_SGP
if (pSGP && m_trace >= Trace::TRACE_PHANTOM) {
m_pSGP = pSGP;
double dWindowSize = dmax (m_detLen, m_dSourceDetectorLength) * 2;
double dHalfWindowSize = dWindowSize / 2;
m_dXMinWin = m_dXCenter - dHalfWindowSize;
m_dXMaxWin = m_dXCenter + dHalfWindowSize;
m_dYMinWin = m_dYCenter - dHalfWindowSize;
m_dYMaxWin = m_dYCenter + dHalfWindowSize;
m_pSGP->setWindow (m_dXMinWin, m_dYMinWin, m_dXMaxWin, m_dYMaxWin);
m_pSGP->setRasterOp (RO_COPY);
m_pSGP->setColor (C_RED);
m_pSGP->moveAbs (0., 0.);
m_pSGP->drawCircle (m_dViewDiameter / 2);
m_pSGP->moveAbs (0., 0.);
m_pSGP->setColor (C_GREEN);
m_pSGP->drawCircle (m_dFocalLength);
m_pSGP->setColor (C_BLUE);
m_pSGP->setTextPointSize (9);
phm.draw (*m_pSGP);
m_dTextHeight = m_pSGP->getCharHeight ();
traceShowParam ("Phantom:", "%s", PROJECTION_TRACE_ROW_PHANT_ID, C_BLACK, phm.name().c_str());
traceShowParam ("Geometry:", "%s", PROJECTION_TRACE_ROW_GEOMETRY, C_BLUE, convertGeometryIDToName(m_idGeometry));
traceShowParam ("Focal Length Ratio:", "%.2f", PROJECTION_TRACE_ROW_FOCAL_LENGTH, C_BLUE, m_dFocalLengthRatio);
// traceShowParam ("Field Of View Ratio:", "%.2f", PROJECTION_TRACE_ROW_FIELD_OF_VIEW, C_BLUE, m_dFieldOfViewRatio);
traceShowParam ("Num Detectors:", "%d", PROJECTION_TRACE_ROW_NDET, C_BLUE, proj.nDet());
traceShowParam ("Num Views:", "%d", PROJECTION_TRACE_ROW_NVIEW, C_BLUE, proj.nView());
traceShowParam ("Samples / Ray:", "%d", PROJECTION_TRACE_ROW_SAMPLES, C_BLUE, m_nSample);
m_pSGP->setMarker (SGP::MARKER_BDIAMOND);
m_pSGP->setColor (C_BLACK);
m_pSGP->setPenWidth (2);
if (m_idGeometry == GEOMETRY_PARALLEL) {
m_pSGP->moveAbs (xs1, ys1);
m_pSGP->lineAbs (xs2, ys2);
m_pSGP->moveAbs (xd1, yd1);
m_pSGP->lineAbs (xd2, yd2);
} else if (m_idGeometry == GEOMETRY_EQUILINEAR) {
m_pSGP->setPenWidth (4);
m_pSGP->moveAbs (xs1, ys1);
m_pSGP->lineAbs (xs2, ys2);
m_pSGP->setPenWidth (2);
m_pSGP->moveAbs (xd1, yd1);
m_pSGP->lineAbs (xd2, yd2);
} else if (m_idGeometry == GEOMETRY_EQUIANGULAR) {
m_pSGP->setPenWidth (4);
m_pSGP->moveAbs (xs1, ys1);
m_pSGP->lineAbs (xs2, ys2);
m_pSGP->setPenWidth (2);
m_pSGP->moveAbs (0., 0.);
m_pSGP->drawArc (m_dCenterDetectorLength, viewAngle + 3 * HALFPI - (m_dAngularDetLen/2), viewAngle + 3 * HALFPI + (m_dAngularDetLen/2));
}
m_pSGP->setPenWidth (1);
}
if (m_trace > Trace::TRACE_CONSOLE)
traceShowParam ("Current View:", "%d (%.0f%%)", PROJECTION_TRACE_ROW_CURR_VIEW, C_RED, iView + iStartView, (iView + iStartView) / static_cast<double>(m_nView) * 100.);
#endif
if (m_trace == Trace::TRACE_CONSOLE)
std::cout << "Current View: " << iView+iStartView << std::endl;
projectSingleView (phm, detArray, xd1, yd1, xd2, yd2, xs1, ys1, xs2, ys2, viewAngle + 3 * HALFPI);
detArray.setViewAngle (viewAngle);
#ifdef HAVE_SGP
if (m_pSGP && m_trace >= Trace::TRACE_PHANTOM) {
// rs_plot (detArray, xd1, yd1, dXCenter, dYCenter, theta);
}
#endif
} /* for each iView */
}
/* NAME
* rayview Calculate raysums for a view at any angle
*
* SYNOPSIS
* rayview (phm, detArray, xd1, nSample, yd1, xd2, yd2, xs1, ys1, xs2, ys2)
* Phantom& phm Phantom to scan
* DETARRAY *detArray Storage of values for detector array
* Scanner& det Scanner parameters
* double xd1, yd1, xd2, yd2 Beginning & ending detector positions
* double xs1, ys1, xs2, ys2 Beginning & ending source positions
*
* RAY POSITIONING
* For each detector, have there are a variable number of rays traced.
* The source of each ray is the center of the source x-ray cell. The
* detector positions are equally spaced within the cell
*
* The increments between rays are calculated so that the cells start
* at the beginning of a detector cell and they end on the endpoint
* of the cell. Thus, the last cell starts at (xd2-ddx),(yd2-ddy).
* The exception to this is if there is only one ray per detector.
* In that case, the detector position is the center of the detector cell.
*/
void
Scanner::projectSingleView (const Phantom& phm, DetectorArray& detArray, const double xd1, const double yd1, const double xd2, const double yd2, const double xs1, const double ys1, const double xs2, const double ys2, const double dDetAngle)
{
double sdx = (xs2 - xs1) / detArray.nDet(); // change in coords
double sdy = (ys2 - ys1) / detArray.nDet(); // between source
double xs_maj = xs1 + (sdx / 2); // put ray source in center of cell
double ys_maj = ys1 + (sdy / 2);
double ddx=0, ddy=0, ddx2=0, ddy2=0, ddx2_ofs=0, ddy2_ofs=0, xd_maj=0, yd_maj=0;
double dAngleInc=0, dAngleSampleInc=0, dAngleSampleOffset=0, dAngleMajor=0;
if (m_idGeometry == GEOMETRY_EQUIANGULAR) {
dAngleInc = m_dAngularDetIncrement;
dAngleSampleInc = dAngleInc / m_nSample;
dAngleSampleOffset = dAngleSampleInc / 2;
dAngleMajor = dDetAngle - (m_dAngularDetLen/2) + dAngleSampleOffset;
} else {
ddx = (xd2 - xd1) / detArray.nDet(); // change in coords
ddy = (yd2 - yd1) / detArray.nDet(); // between detectors
ddx2 = ddx / m_nSample; // Incr. between rays with detector cell
ddy2 = ddy / m_nSample; // Doesn't include detector endpoints
ddx2_ofs = ddx2 / 2; // offset of 1st ray from start of detector cell
ddy2_ofs = ddy2 / 2;
xd_maj = xd1 + ddx2_ofs; // Incr. between detector cells
yd_maj = yd1 + ddy2_ofs;
}
DetectorValue* detval = detArray.detValues();
if (phm.getComposition() == P_UNIT_PULSE) { // put unit pulse in center of view
for (int d = 0; d < detArray.nDet(); d++)
detval[d] = 0;
detval[ detArray.nDet() / 2 ] = 1;
} else {
for (int d = 0; d < detArray.nDet(); d++) {
double xs = xs_maj;
double ys = ys_maj;
double xd=0, yd=0, dAngle=0;
if (m_idGeometry == GEOMETRY_EQUIANGULAR) {
dAngle = dAngleMajor;
} else {
xd = xd_maj;
yd = yd_maj;
}
double sum = 0.0;
for (unsigned int i = 0; i < m_nSample; i++) {
if (m_idGeometry == GEOMETRY_EQUIANGULAR) {
xd = m_dCenterDetectorLength * cos (dAngle);
yd = m_dCenterDetectorLength * sin (dAngle);
}
#ifdef HAVE_SGP
if (m_pSGP && m_trace >= Trace::TRACE_PROJECTIONS) {
m_pSGP->setColor (C_YELLOW);
m_pSGP->setRasterOp (RO_AND);
m_pSGP->moveAbs (xs, ys);
m_pSGP->lineAbs (xd, yd);
}
#endif
sum += projectSingleLine (phm, xd, yd, xs, ys);
#ifdef HAVE_SGP
// if (m_trace >= Trace::TRACE_CLIPPING) {
// traceShowParam ("Attenuation:", "%s", PROJECTION_TRACE_ROW_ATTEN, C_LTMAGENTA, " ");
// traceShowParam ("Attenuation:", "%.3f", PROJECTION_TRACE_ROW_ATTEN, C_LTMAGENTA, sum);
// }
#endif
if (m_idGeometry == GEOMETRY_EQUIANGULAR)
dAngle += dAngleSampleInc;
else {
xd += ddx2;
yd += ddy2;
}
} // for each sample in detector
detval[d] = sum / m_nSample;
xs_maj += sdx;
ys_maj += sdy;
if (m_idGeometry == GEOMETRY_EQUIANGULAR)
dAngleMajor += dAngleInc;
else {
xd_maj += ddx;
yd_maj += ddy;
}
} /* for each detector */
} /* if not unit pulse */
}
void
Scanner::traceShowParam (const char *szLabel, const char *fmt, int row, int color, ...)
{
va_list arg;
va_start(arg, color);
#ifdef HAVE_SGP
traceShowParamRasterOp (RO_COPY, szLabel, fmt, row, color, arg);
#else
traceShowParamRasterOp (0, szLabel, fmt, row, color, arg);
#endif
va_end(arg);
}
void
Scanner::traceShowParamXOR (const char *szLabel, const char *fmt, int row, int color, ...)
{
va_list arg;
va_start(arg, color);
#ifdef HAVE_SGP
traceShowParamRasterOp (RO_XOR, szLabel, fmt, row, color, arg);
#else
traceShowParamRasterOp (0, szLabel, fmt, row, color, arg);
#endif
va_end(arg);
}
void
Scanner::traceShowParamRasterOp (int iRasterOp, const char *szLabel, const char *fmt, int row, int color, va_list args)
{
char szValue[256];
vsnprintf (szValue, sizeof(szValue), fmt, args);
#ifdef HAVE_SGP
if (m_pSGP) {
m_pSGP->setRasterOp (iRasterOp);
m_pSGP->setTextColor (color, -1);
double dValueOffset = (m_dXMaxWin - m_dXMinWin) / 4;
if (row < 4) {
double dYPos = m_dYMaxWin - (row * m_dTextHeight);
double dXPos = m_dXMinWin;
m_pSGP->moveAbs (dXPos, dYPos);
m_pSGP->drawText (szLabel);
m_pSGP->moveAbs (dXPos + dValueOffset, dYPos);
m_pSGP->drawText (szValue);
} else {
row -= 4;
double dYPos = m_dYMaxWin - (row * m_dTextHeight);
double dXPos = m_dXMinWin + (m_dXMaxWin - m_dXMinWin) * 0.5;
m_pSGP->moveAbs (dXPos, dYPos);
m_pSGP->drawText (szLabel);
m_pSGP->moveAbs (dXPos + dValueOffset, dYPos);
m_pSGP->drawText (szValue);
}
} else
#endif
{
cio_put_str (szLabel);
cio_put_str (szValue);
cio_put_str ("\n");
}
}
/* NAME
* projectSingleLine INTERNAL: Calculates raysum along a line for a Phantom
*
* SYNOPSIS
* rsum = phm_ray_attenuation (phm, x1, y1, x2, y2)
* double rsum Ray sum of Phantom along given line
* Phantom& phm; Phantom from which to calculate raysum
* double *x1, *y1, *x2, y2 Endpoints of ray path (in Phantom coords)
*/
double
Scanner::projectSingleLine (const Phantom& phm, const double x1, const double y1, const double x2, const double y2)
{
// check ray against each pelem in Phantom
double rsum = 0.0;
for (PElemConstIterator i = phm.listPElem().begin(); i != phm.listPElem().end(); i++)
rsum += projectLineAgainstPElem (**i, x1, y1, x2, y2);
return (rsum);
}
/* NAME
* pelem_ray_attenuation Calculate raysum of an pelem along one line
*
* SYNOPSIS
* rsum = pelem_ray_attenuation (pelem, x1, y1, x2, y2)
* double rsum Computed raysum
* PhantomElement& pelem Pelem to scan
* double x1, y1, x2, y2 Endpoints of raysum line
*/
double
Scanner::projectLineAgainstPElem (const PhantomElement& pelem, double x1, double y1, double x2, double y2)
{
if (! pelem.clipLineWorldCoords (x1, y1, x2, y2)) {
if (m_trace == Trace::TRACE_CLIPPING)
cio_tone (1000., 0.05);
return (0.0);
}
#ifdef HAVE_SGP
if (m_pSGP && m_trace == Trace::TRACE_CLIPPING) {
m_pSGP->setRasterOp (RO_XOR);
m_pSGP->moveAbs (x1, y1);
m_pSGP->lineAbs (x2, y2);
cio_tone (8000., 0.05);
m_pSGP->moveAbs (x1, y1);
m_pSGP->lineAbs (x2, y2);
m_pSGP->setRasterOp (RO_SET);
}
#endif
double len = lineLength (x1, y1, x2, y2);
return (len * pelem.atten());
}
|