1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
|
/*****************************************************************************
** This is part of the CTSim program
** Copyright (c) 1983-2009 Kevin Rosenberg
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License (version 2) as
** published by the Free Software Foundation.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
******************************************************************************/
#include "ctsupport.h"
/* NAME
* integrateSimpson Integrate array of data by Simpson's rule
*
* SYNOPSIS
* double integrateSimpson (xmin, xmax, y, np)
* double xmin, xmax Extent of integration
* double y[] Function values to be integrated
* int np number of data points
* (must be an odd number and at least 3)
*
* RETURNS
* integrand of function
*/
double
integrateSimpson (const double xmin, const double xmax, const double *y, const int np)
{
if (np < 2)
return (0.);
else if (np == 2)
return ((xmax - xmin) * (y[0] + y[1]) / 2);
double area = 0;
int nDiv = (np - 1) / 2; // number of divisions
double width = (xmax - xmin) / (double) (np - 1); // width of cells
for (int i = 1; i <= nDiv; i++) {
int xr = 2 * i;
int xl = xr - 2; // 2 * (i - 1) == 2 * i - 2 == xr - 2
int xm = xr - 1; // (xl+xr)/2 == (xr+xr-2)/2 == (2*xr-2)/2 = xr-1
area += (width / 3.0) * (y[xl] + 4.0 * y[xm] + y[xr]);
}
if ((np & 1) == 0) /* do last trapazoid */
area += width * (y[np-2] + y[np-1]) / 2;
return (area);
}
/* NAME
* normalizeAngle Normalize angle to 0 to 2 * PI range
*
* SYNOPSIS
* t = normalizeAngle (theta)
* double t Normalized angle
* double theta Input angle
*/
double
normalizeAngle (double theta)
{
while (theta < 0.)
theta += TWOPI;
while (theta >= TWOPI)
theta -= TWOPI;
return (theta);
}
void
vectorNumericStatistics (std::vector<double> vec, const int nPoints, double& min, double& max, double& mean, double& mode, double& median, double& stddev)
{
if (nPoints <= 0)
return;
mean = 0;
min = vec[0];
max = vec[0];
int i;
for (i = 0; i < nPoints; i++) {
double v = vec[i];
if (v > max)
max = v;
if (v < min)
min = v;
mean += v;
}
mean /= nPoints;
static const int nbin = 1024;
int hist[ nbin ] = {0};
double spread = max - min;
mode = 0;
stddev = 0;
for (i = 0; i < nPoints; i++) {
double v = vec[i];
int b = static_cast<int>((((v - min) / spread) * (nbin - 1)) + 0.5);
hist[b]++;
double diff = (v - mean);
stddev += diff * diff;
}
stddev = sqrt (stddev / nPoints);
int max_binindex = 0;
int max_bin = -1;
for (int ibin = 0; ibin < nbin; ibin++) {
if (hist[ibin] > max_bin) {
max_bin = hist[ibin];
max_binindex = ibin;
}
}
mode = (max_binindex * spread / (nbin - 1)) + min;
std::sort(vec.begin(), vec.end());
if (nPoints % 2) // Odd
median = vec[((nPoints - 1) / 2)];
else // Even
median = (vec[ (nPoints / 2) - 1 ] + vec[ nPoints / 2 ]) / 2;
}
|