1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
#include "engine.h"
bool BIH::triintersect(tri &t, const vec &o, const vec &ray, float maxdist, float &dist, int mode, tri *noclip)
{
vec p;
p.cross(ray, t.c);
float det = t.b.dot(p);
if(det == 0) return false;
vec r(o);
r.sub(t.a);
float u = r.dot(p) / det;
if(u < 0 || u > 1) return false;
vec q;
q.cross(r, t.b);
float v = ray.dot(q) / det;
if(v < 0 || u + v > 1) return false;
float f = t.c.dot(q) / det;
if(f < 0 || f > maxdist) return false;
if(!(mode&RAY_SHADOW) && &t >= noclip) return false;
if(t.tex && (mode&RAY_ALPHAPOLY)==RAY_ALPHAPOLY && (t.tex->alphamask || (lightmapping <= 1 && (loadalphamask(t.tex), t.tex->alphamask))))
{
int si = clamp(int(t.tex->xs * (t.tc[0] + u*(t.tc[2] - t.tc[0]) + v*(t.tc[4] - t.tc[0]))), 0, t.tex->xs-1),
ti = clamp(int(t.tex->ys * (t.tc[1] + u*(t.tc[3] - t.tc[1]) + v*(t.tc[5] - t.tc[1]))), 0, t.tex->ys-1);
if(!(t.tex->alphamask[ti*((t.tex->xs+7)/8) + si/8] & (1<<(si%8)))) return false;
}
dist = f;
return true;
}
struct BIHStack
{
BIHNode *node;
float tmin, tmax;
};
inline bool BIH::traverse(const vec &o, const vec &ray, const vec &invray, float maxdist, float &dist, int mode, BIHNode *curnode, float tmin, float tmax)
{
BIHStack stack[128];
int stacksize = 0;
ivec order(ray.x>0 ? 0 : 1, ray.y>0 ? 0 : 1, ray.z>0 ? 0 : 1);
for(;;)
{
int axis = curnode->axis();
int nearidx = order[axis], faridx = nearidx^1;
float nearsplit = (curnode->split[nearidx] - o[axis])*invray[axis],
farsplit = (curnode->split[faridx] - o[axis])*invray[axis];
if(nearsplit <= tmin)
{
if(farsplit < tmax)
{
if(!curnode->isleaf(faridx))
{
curnode = &nodes[curnode->childindex(faridx)];
tmin = max(tmin, farsplit);
continue;
}
else if(triintersect(tris[curnode->childindex(faridx)], o, ray, maxdist, dist, mode, noclip)) return true;
}
}
else if(curnode->isleaf(nearidx))
{
if(triintersect(tris[curnode->childindex(nearidx)], o, ray, maxdist, dist, mode, noclip)) return true;
if(farsplit < tmax)
{
if(!curnode->isleaf(faridx))
{
curnode = &nodes[curnode->childindex(faridx)];
tmin = max(tmin, farsplit);
continue;
}
else if(triintersect(tris[curnode->childindex(faridx)], o, ray, maxdist, dist, mode, noclip)) return true;
}
}
else
{
if(farsplit < tmax)
{
if(!curnode->isleaf(faridx))
{
if(stacksize < int(sizeof(stack)/sizeof(stack[0])))
{
BIHStack &save = stack[stacksize++];
save.node = &nodes[curnode->childindex(faridx)];
save.tmin = max(tmin, farsplit);
save.tmax = tmax;
}
else
{
if(traverse(o, ray, invray, maxdist, dist, mode, &nodes[curnode->childindex(nearidx)], tmin, min(tmax, nearsplit))) return true;
curnode = &nodes[curnode->childindex(faridx)];
tmin = max(tmin, farsplit);
continue;
}
}
else if(triintersect(tris[curnode->childindex(faridx)], o, ray, maxdist, dist, mode, noclip)) return true;
}
curnode = &nodes[curnode->childindex(nearidx)];
tmax = min(tmax, nearsplit);
continue;
}
if(stacksize <= 0) return false;
BIHStack &restore = stack[--stacksize];
curnode = restore.node;
tmin = restore.tmin;
tmax = restore.tmax;
}
}
inline bool BIH::traverse(const vec &o, const vec &ray, float maxdist, float &dist, int mode)
{
if(!numnodes) return false;
vec invray(ray.x ? 1/ray.x : 1e16f, ray.y ? 1/ray.y : 1e16f, ray.z ? 1/ray.z : 1e16f);
float tmin, tmax;
float t1 = (bbmin.x - o.x)*invray.x,
t2 = (bbmax.x - o.x)*invray.x;
if(invray.x > 0) { tmin = t1; tmax = t2; } else { tmin = t2; tmax = t1; }
t1 = (bbmin.y - o.y)*invray.y;
t2 = (bbmax.y - o.y)*invray.y;
if(invray.y > 0) { tmin = max(tmin, t1); tmax = min(tmax, t2); } else { tmin = max(tmin, t2); tmax = min(tmax, t1); }
t1 = (bbmin.z - o.z)*invray.z;
t2 = (bbmax.z - o.z)*invray.z;
if(invray.z > 0) { tmin = max(tmin, t1); tmax = min(tmax, t2); } else { tmin = max(tmin, t2); tmax = min(tmax, t1); }
if(tmin >= maxdist || tmin>=tmax) return false;
tmax = min(tmax, maxdist);
return BIH::traverse(o, ray, invray, maxdist, dist, mode, &nodes[0], tmin, tmax);
}
void BIH::build(vector<BIHNode> &buildnodes, ushort *indices, int numindices, const vec &vmin, const vec &vmax, int depth)
{
maxdepth = max(maxdepth, depth);
int axis = 2;
loopk(2) if(vmax[k] - vmin[k] > vmax[axis] - vmin[axis]) axis = k;
vec leftmin, leftmax, rightmin, rightmax;
float splitleft, splitright;
int left, right;
loopk(3)
{
leftmin = rightmin = vec(1e16f, 1e16f, 1e16f);
leftmax = rightmax = vec(-1e16f, -1e16f, -1e16f);
float split = 0.5f*(vmax[axis] + vmin[axis]);
for(left = 0, right = numindices, splitleft = SHRT_MIN, splitright = SHRT_MAX; left < right;)
{
tri &tri = tris[indices[left]];
float amin = min(tri.a[axis], min(tri.b[axis], tri.c[axis])),
amax = max(tri.a[axis], max(tri.b[axis], tri.c[axis]));
if(max(split - amin, 0.0f) > max(amax - split, 0.0f))
{
++left;
splitleft = max(splitleft, amax);
leftmin.min(tri.a).min(tri.b).min(tri.c);
leftmax.max(tri.a).max(tri.b).max(tri.c);
}
else
{
--right;
swap(indices[left], indices[right]);
splitright = min(splitright, amin);
rightmin.min(tri.a).min(tri.b).min(tri.c);
rightmax.max(tri.a).max(tri.b).max(tri.c);
}
}
if(left > 0 && right < numindices) break;
axis = (axis+1)%3;
}
if(!left || right==numindices)
{
leftmin = rightmin = vec(1e16f, 1e16f, 1e16f);
leftmax = rightmax = vec(-1e16f, -1e16f, -1e16f);
left = right = numindices/2;
splitleft = SHRT_MIN;
splitright = SHRT_MAX;
loopi(numindices)
{
tri &tri = tris[indices[i]];
if(i < left)
{
splitleft = max(splitleft, max(tri.a[axis], max(tri.b[axis], tri.c[axis])));
leftmin.min(tri.a).min(tri.b).min(tri.c);
leftmax.max(tri.a).max(tri.b).max(tri.c);
}
else
{
splitright = min(splitright, min(tri.a[axis], min(tri.b[axis], tri.c[axis])));
rightmin.min(tri.a).min(tri.b).min(tri.c);
rightmax.max(tri.a).max(tri.b).max(tri.c);
}
}
}
int node = buildnodes.length();
buildnodes.add();
buildnodes[node].split[0] = short(ceil(splitleft));
buildnodes[node].split[1] = short(floor(splitright));
if(left==1) buildnodes[node].child[0] = (axis<<14) | indices[0];
else
{
buildnodes[node].child[0] = (axis<<14) | buildnodes.length();
build(buildnodes, indices, left, leftmin, leftmax, depth+1);
}
if(numindices-right==1) buildnodes[node].child[1] = (1<<15) | (left==1 ? 1<<14 : 0) | indices[right];
else
{
buildnodes[node].child[1] = (left==1 ? 1<<14 : 0) | buildnodes.length();
build(buildnodes, &indices[right], numindices-right, rightmin, rightmax, depth+1);
}
}
BIH::BIH(vector<tri> *t)
: maxdepth(0), numnodes(0), nodes(NULL), numtris(0), tris(NULL), noclip(NULL), bbmin(1e16f, 1e16f, 1e16f), bbmax(-1e16f, -1e16f, -1e16f)
{
numtris = t[0].length() + t[1].length();
if(!numtris) return;
tris = new tri[numtris];
noclip = &tris[t[0].length()];
memcpy(tris, t[0].getbuf(), t[0].length()*sizeof(tri));
memcpy(noclip, t[1].getbuf(), t[1].length()*sizeof(tri));
loopi(numtris)
{
tri &tri = tris[i];
bbmin.min(tri.a).min(tri.b).min(tri.c);
bbmax.max(tri.a).max(tri.b).max(tri.c);
}
radius = max(max(max(fabs(bbmin.x), fabs(bbmin.y)), fabs(bbmin.z)),
max(max(fabs(bbmax.x), fabs(bbmax.y)), fabs(bbmax.z)));
radius *= radius;
vector<BIHNode> buildnodes;
ushort *indices = new ushort[numtris];
loopi(numtris) indices[i] = i;
maxdepth = 0;
build(buildnodes, indices, numtris, bbmin, bbmax);
delete[] indices;
numnodes = buildnodes.length();
nodes = new BIHNode[numnodes];
memcpy(nodes, buildnodes.getbuf(), numnodes*sizeof(BIHNode));
// convert tri.b/tri.c to edges
loopi(numtris)
{
tri &tri = tris[i];
tri.b.sub(tri.a);
tri.c.sub(tri.a);
}
}
bool mmintersect(const extentity &e, const vec &o, const vec &ray, float maxdist, int mode, float &dist)
{
extern vector<mapmodelinfo> mapmodels;
if(!mapmodels.inrange(e.attr2)) return false;
model *m = mapmodels[e.attr2].m;
if(!m)
{
m = loadmodel(NULL, e.attr2);
if(!m) return false;
}
if(mode&RAY_SHADOW)
{
if(!m->shadow || e.flags&extentity::F_NOSHADOW) return false;
}
else if((mode&RAY_ENTS)!=RAY_ENTS && (!m->collide || e.flags&extentity::F_NOCOLLIDE)) return false;
if(!m->bih && (lightmapping > 1 || !m->setBIH())) return false;
vec mo = vec(o).sub(e.o), mray(ray);
float v = mo.dot(mray), inside = m->bih->radius - mo.squaredlen();
if((inside < 0 && v > 0) || inside + v*v < 0) return false;
int yaw = e.attr1;
if(yaw != 0)
{
if(yaw < 0) yaw = 360 + yaw%360;
else if(yaw >= 360) yaw %= 360;
const vec2 &rot = sincos360[yaw];
mo.rotate_around_z(rot.x, -rot.y);
mray.rotate_around_z(rot.x, -rot.y);
}
return m->bih->traverse(mo, mray, maxdist ? maxdist : 1e16f, dist, mode);
}
|