1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
|
#include "engine.h"
VARP(maxdynlights, 0, min(3, MAXDYNLIGHTS), MAXDYNLIGHTS);
VARP(dynlightdist, 0, 1024, 10000);
struct dynlight
{
vec o, hud;
float radius, initradius, curradius, dist;
vec color, initcolor, curcolor;
int fade, peak, expire, flags;
physent *owner;
void calcradius()
{
if(fade + peak > 0)
{
int remaining = expire - lastmillis;
if(flags&DL_EXPAND)
curradius = initradius + (radius - initradius) * (1.0f - remaining/float(fade + peak));
else if(!(flags&DL_FLASH) && remaining > fade)
curradius = initradius + (radius - initradius) * (1.0f - float(remaining - fade)/peak);
else if(flags&DL_SHRINK)
curradius = (radius*remaining)/fade;
else curradius = radius;
}
else curradius = radius;
}
void calccolor()
{
if(flags&DL_FLASH || peak <= 0) curcolor = color;
else
{
int peaking = expire - lastmillis - fade;
if(peaking <= 0) curcolor = color;
else curcolor.lerp(initcolor, color, 1.0f - float(peaking)/peak);
}
float intensity = 1.0f;
if(fade > 0)
{
int fading = expire - lastmillis;
if(fading < fade) intensity = float(fading)/fade;
}
curcolor.mul(intensity);
// KLUGE: this prevents nvidia drivers from trying to recompile dynlight fragment programs
loopk(3) if(fmod(curcolor[k], 1.0f/256) < 0.001f) curcolor[k] += 0.001f;
}
};
vector<dynlight> dynlights;
vector<dynlight *> closedynlights;
void adddynlight(const vec &o, float radius, const vec &color, int fade, int peak, int flags, float initradius, const vec &initcolor, physent *owner)
{
if(!maxdynlights) return;
if(o.dist(camera1->o) > dynlightdist || radius <= 0) return;
int insert = 0, expire = fade + peak + lastmillis;
loopvrev(dynlights) if(expire>=dynlights[i].expire) { insert = i+1; break; }
dynlight d;
d.o = d.hud = o;
d.radius = radius;
d.initradius = initradius;
d.color = color;
d.initcolor = initcolor;
d.fade = fade;
d.peak = peak;
d.expire = expire;
d.flags = flags;
d.owner = owner;
dynlights.insert(insert, d);
}
void cleardynlights()
{
int faded = -1;
loopv(dynlights) if(lastmillis<dynlights[i].expire) { faded = i; break; }
if(faded<0) dynlights.setsize(0);
else if(faded>0) dynlights.remove(0, faded);
}
void removetrackeddynlights(physent *owner)
{
loopvrev(dynlights) if(owner ? dynlights[i].owner == owner : dynlights[i].owner != NULL) dynlights.remove(i);
}
void updatedynlights()
{
cleardynlights();
game::adddynlights();
loopv(dynlights)
{
dynlight &d = dynlights[i];
if(d.owner) game::dynlighttrack(d.owner, d.o, d.hud);
d.calcradius();
d.calccolor();
}
}
int finddynlights()
{
closedynlights.setsize(0);
if(!maxdynlights) return 0;
physent e;
e.type = ENT_CAMERA;
loopvj(dynlights)
{
dynlight &d = dynlights[j];
if(d.curradius <= 0) continue;
d.dist = camera1->o.dist(d.o) - d.curradius;
if(d.dist > dynlightdist || isfoggedsphere(d.curradius, d.o) || pvsoccludedsphere(d.o, d.curradius))
continue;
if(reflecting || refracting > 0)
{
if(d.o.z + d.curradius < reflectz) continue;
}
else if(refracting < 0 && d.o.z - d.curradius > reflectz) continue;
e.o = d.o;
e.radius = e.xradius = e.yradius = e.eyeheight = e.aboveeye = d.curradius;
if(!collide(&e, vec(0, 0, 0), 0, false)) continue;
int insert = 0;
loopvrev(closedynlights) if(d.dist >= closedynlights[i]->dist) { insert = i+1; break; }
closedynlights.insert(insert, &d);
if(closedynlights.length() >= DYNLIGHTMASK) break;
}
return closedynlights.length();
}
bool getdynlight(int n, vec &o, float &radius, vec &color)
{
if(!closedynlights.inrange(n)) return false;
dynlight &d = *closedynlights[n];
o = d.o;
radius = d.curradius;
color = d.curcolor;
return true;
}
void dynlightreaching(const vec &target, vec &color, vec &dir, bool hud)
{
vec dyncolor(0, 0, 0);//, dyndir(0, 0, 0);
loopv(dynlights)
{
dynlight &d = dynlights[i];
if(d.curradius<=0) continue;
vec ray(hud ? d.hud : d.o);
ray.sub(target);
float mag = ray.squaredlen();
if(mag >= d.curradius*d.curradius) continue;
vec color = d.curcolor;
color.mul(1 - sqrtf(mag)/d.curradius);
dyncolor.add(color);
//dyndir.add(ray.mul(intensity/mag));
}
#if 0
if(!dyndir.iszero())
{
dyndir.normalize();
float x = dyncolor.magnitude(), y = color.magnitude();
if(x+y>0)
{
dir.mul(x);
dyndir.mul(y);
dir.add(dyndir).div(x+y);
if(dir.iszero()) dir = vec(0, 0, 1);
else dir.normalize();
}
}
#endif
color.add(dyncolor);
}
void calcdynlightmask(vtxarray *va)
{
uint mask = 0;
int offset = 0;
loopv(closedynlights)
{
dynlight &d = *closedynlights[i];
if(d.o.dist_to_bb(va->geommin, va->geommax) >= d.curradius) continue;
mask |= (i+1)<<offset;
offset += DYNLIGHTBITS;
if(offset >= maxdynlights*DYNLIGHTBITS) break;
}
va->dynlightmask = mask;
}
int setdynlights(vtxarray *va)
{
if(closedynlights.empty() || !va->dynlightmask) return 0;
extern bool minimizedynlighttcusage();
static vec4 posv[MAXDYNLIGHTS];
static vec colorv[MAXDYNLIGHTS];
int index = 0;
for(uint mask = va->dynlightmask; mask; mask >>= DYNLIGHTBITS, index++)
{
dynlight &d = *closedynlights[(mask&DYNLIGHTMASK)-1];
float scale = 1.0f/d.curradius;
vec origin = vec(d.o).mul(-scale);
if(index>0 && minimizedynlighttcusage())
{
scale /= posv[0].w;
origin.sub(vec(posv[0]).mul(scale));
}
posv[index] = vec4(origin, scale);
colorv[index] = d.curcolor;
}
GLOBALPARAMV(dynlightpos, posv, index);
GLOBALPARAMV(dynlightcolor, colorv, index);
return index;
}
|