1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
static struct flaretype
{
int type; /* flaretex index, 0..5, -1 for 6+random shine */
float loc; /* postion on axis */
float scale; /* texture scaling */
uchar alpha; /* color alpha */
} flaretypes[] =
{
{2, 1.30f, 0.04f, 153}, //flares
{3, 1.00f, 0.10f, 102},
{1, 0.50f, 0.20f, 77},
{3, 0.20f, 0.05f, 77},
{0, 0.00f, 0.04f, 77},
{5, -0.25f, 0.07f, 127},
{5, -0.40f, 0.02f, 153},
{5, -0.60f, 0.04f, 102},
{5, -1.00f, 0.03f, 51},
{-1, 1.00f, 0.30f, 255}, //shine - red, green, blue
{-2, 1.00f, 0.20f, 255},
{-3, 1.00f, 0.25f, 255}
};
struct flare
{
vec o, center;
float size;
bvec color;
bool sparkle;
};
VAR(flarelights, 0, 0, 1);
VARP(flarecutoff, 0, 1000, 10000);
VARP(flaresize, 20, 100, 500);
struct flarerenderer : partrenderer
{
int maxflares, numflares;
unsigned int shinetime;
flare *flares;
flarerenderer(const char *texname, int maxflares)
: partrenderer(texname, 3, PT_FLARE|PT_SHADER), maxflares(maxflares), numflares(0), shinetime(0)
{
flares = new flare[maxflares];
}
~flarerenderer()
{
delete[] flares;
}
void reset()
{
numflares = 0;
}
void newflare(vec &o, const vec ¢er, uchar r, uchar g, uchar b, float mod, float size, bool sun, bool sparkle)
{
if(numflares >= maxflares) return;
vec target; //occlusion check (neccessary as depth testing is turned off)
if(!raycubelos(o, camera1->o, target)) return;
flare &f = flares[numflares++];
f.o = o;
f.center = center;
f.size = size;
f.color = bvec(uchar(r*mod), uchar(g*mod), uchar(b*mod));
f.sparkle = sparkle;
}
void addflare(vec &o, uchar r, uchar g, uchar b, bool sun, bool sparkle)
{
//frustrum + fog check
if(isvisiblesphere(0.0f, o) > (sun?VFC_FOGGED:VFC_FULL_VISIBLE)) return;
//find closest point between camera line of sight and flare pos
vec flaredir = vec(o).sub(camera1->o);
vec center = vec(camdir).mul(flaredir.dot(camdir)).add(camera1->o);
float mod, size;
if(sun) //fixed size
{
mod = 1.0;
size = flaredir.magnitude() * flaresize / 100.0f;
}
else
{
mod = (flarecutoff-vec(o).sub(center).squaredlen())/flarecutoff;
if(mod < 0.0f) return;
size = flaresize / 5.0f;
}
newflare(o, center, r, g, b, mod, size, sun, sparkle);
}
void makelightflares()
{
numflares = 0; //regenerate flarelist each frame
shinetime = lastmillis/10;
if(editmode || !flarelights) return;
const vector<extentity *> &ents = entities::getents();
extern const vector<int> &checklightcache(int x, int y);
const vector<int> &lights = checklightcache(int(camera1->o.x), int(camera1->o.y));
loopv(lights)
{
entity &e = *ents[lights[i]];
if(e.type != ET_LIGHT) continue;
bool sun = (e.attr1==0);
float radius = float(e.attr1);
vec flaredir = vec(e.o).sub(camera1->o);
float len = flaredir.magnitude();
if(!sun && (len > radius)) continue;
if(isvisiblesphere(0.0f, e.o) > (sun?VFC_FOGGED:VFC_FULL_VISIBLE)) continue;
vec center = vec(camdir).mul(flaredir.dot(camdir)).add(camera1->o);
float mod, size;
if(sun) //fixed size
{
mod = 1.0;
size = len * flaresize / 100.0f;
}
else
{
mod = (radius-len)/radius;
size = flaresize / 5.0f;
}
newflare(e.o, center, e.attr2, e.attr3, e.attr4, mod, size, sun, sun);
}
}
int count()
{
return numflares;
}
bool haswork()
{
return (numflares != 0) && !glaring && !reflecting && !refracting;
}
void render()
{
textureshader->set();
glDisable(GL_DEPTH_TEST);
if(!tex) tex = textureload(texname);
glBindTexture(GL_TEXTURE_2D, tex->id);
gle::defattrib(gle::ATTRIB_VERTEX, 3, GL_FLOAT);
gle::defattrib(gle::ATTRIB_TEXCOORD0, 2, GL_FLOAT);
gle::defattrib(gle::ATTRIB_COLOR, 4, GL_UNSIGNED_BYTE);
gle::begin(GL_QUADS);
loopi(numflares)
{
const flare &f = flares[i];
vec center = f.center;
vec axis = vec(f.o).sub(center);
bvec4 color(f.color, 255);
loopj(f.sparkle?12:9)
{
const flaretype &ft = flaretypes[j];
vec o = vec(axis).mul(ft.loc).add(center);
float sz = ft.scale * f.size;
int tex = ft.type;
if(ft.type < 0) //sparkles - always done last
{
shinetime = (shinetime + 1) % 10;
tex = 6+shinetime;
color.r = 0;
color.g = 0;
color.b = 0;
color[-ft.type-1] = f.color[-ft.type-1]; //only want a single channel
}
color.a = ft.alpha;
const float tsz = 0.25; //flares are aranged in 4x4 grid
float tx = tsz*(tex&0x03), ty = tsz*((tex>>2)&0x03);
gle::attribf(o.x+(-camright.x+camup.x)*sz, o.y+(-camright.y+camup.y)*sz, o.z+(-camright.z+camup.z)*sz);
gle::attribf(tx, ty+tsz);
gle::attrib(color);
gle::attribf(o.x+( camright.x+camup.x)*sz, o.y+( camright.y+camup.y)*sz, o.z+( camright.z+camup.z)*sz);
gle::attribf(tx+tsz, ty+tsz);
gle::attrib(color);
gle::attribf(o.x+( camright.x-camup.x)*sz, o.y+( camright.y-camup.y)*sz, o.z+( camright.z-camup.z)*sz);
gle::attribf(tx+tsz, ty);
gle::attrib(color);
gle::attribf(o.x+(-camright.x-camup.x)*sz, o.y+(-camright.y-camup.y)*sz, o.z+(-camright.z-camup.z)*sz);
gle::attribf(tx, ty);
gle::attrib(color);
}
}
gle::end();
glEnable(GL_DEPTH_TEST);
}
//square per round hole - use addflare(..) instead
particle *addpart(const vec &o, const vec &d, int fade, int color, float size, int gravity = 0) { return NULL; }
};
static flarerenderer flares("<grey>packages/particles/lensflares.png", 64);
|