File: mpr.h

package info (click to toggle)
cube2 0.0.20201227%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 5,448 kB
  • sloc: cpp: 76,148; ansic: 24,923; makefile: 949; sh: 16
file content (575 lines) | stat: -rw-r--r-- 20,371 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
// This code is based off the Minkowski Portal Refinement algorithm by Gary Snethen in XenoCollide & Game Programming Gems 7.

namespace mpr
{
    struct CubePlanes
    {
        const clipplanes &p;

        CubePlanes(const clipplanes &p) : p(p) {}

        vec center() const { return p.o; }

        vec supportpoint(const vec &n) const
        {
            int besti = 7;
            float bestd = n.dot(p.v[7]);
            loopi(7)
            {
                float d = n.dot(p.v[i]);
                if(d > bestd) { besti = i; bestd = d; }
            }
            return p.v[besti];
        }
    };

    struct SolidCube
    {
        vec o;
        int size;

        SolidCube(float x, float y, float z, int size) : o(x, y, z), size(size) {}
        SolidCube(const vec &o, int size) : o(o), size(size) {}
        SolidCube(const ivec &o, int size) : o(o), size(size) {}

        vec center() const { return vec(o).add(size/2); }

        vec supportpoint(const vec &n) const
        {
            vec p(o);
            if(n.x > 0) p.x += size;
            if(n.y > 0) p.y += size;
            if(n.z > 0) p.z += size;
            return p;
        }
    };

    struct Ent
    {
        physent *ent;

        Ent(physent *ent) : ent(ent) {}

        vec center() const { return vec(ent->o.x, ent->o.y, ent->o.z + (ent->aboveeye - ent->eyeheight)/2); }
    };

    struct EntOBB : Ent
    {
        matrix3 orient;
        float zmargin;

        EntOBB(physent *ent, float zmargin = 0) : Ent(ent), zmargin(zmargin)
        {
            orient.setyaw(ent->yaw*RAD);
        }

        vec center() const { return vec(ent->o.x, ent->o.y, ent->o.z + (ent->aboveeye - ent->eyeheight - zmargin)/2); }
        
        vec contactface(const vec &wn, const vec &wdir) const
        {
            vec n = orient.transform(wn).div(vec(ent->xradius, ent->yradius, (ent->aboveeye + ent->eyeheight + zmargin)/2)),
                dir = orient.transform(wdir),
                an(fabs(n.x), fabs(n.y), dir.z ? fabs(n.z) : 0),
                fn(0, 0, 0);
            if(an.x > an.y)
            {
                if(an.x > an.z) fn.x = n.x*dir.x < 0 ? (n.x > 0 ? 1 : -1) : 0;
                else if(an.z > 0) fn.z = n.z*dir.z < 0 ? (n.z > 0 ? 1 : -1) : 0;
            }
            else if(an.y > an.z) fn.y = n.y*dir.y < 0 ? (n.y > 0 ? 1 : -1) : 0;
            else if(an.z > 0) fn.z = n.z*dir.z < 0 ? (n.z > 0 ? 1 : -1) : 0;
            return orient.transposedtransform(fn);
        }

        vec localsupportpoint(const vec &ln) const
        {
            return vec(ln.x > 0 ? ent->xradius : -ent->xradius,
                       ln.y > 0 ? ent->yradius : -ent->yradius,
                       ln.z > 0 ? ent->aboveeye : -ent->eyeheight - zmargin);
        }

        vec supportpoint(const vec &n) const
        {
            return orient.transposedtransform(localsupportpoint(orient.transform(n))).add(ent->o);
        }

        float supportcoordneg(float a, float b, float c) const
        {
            return localsupportpoint(vec(-a, -b, -c)).dot(vec(a, b, c));
        }
        float supportcoord(float a, float b, float c) const
        {
            return localsupportpoint(vec(a, b, c)).dot(vec(a, b, c));
        }

        float left() const { return supportcoordneg(orient.a.x, orient.b.x, orient.c.x) + ent->o.x; }
        float right() const { return supportcoord(orient.a.x, orient.b.x, orient.c.x) + ent->o.x; }
        float back() const { return supportcoordneg(orient.a.y, orient.b.y, orient.c.y) + ent->o.y; }
        float front() const { return supportcoord(orient.a.y, orient.b.y, orient.c.y) + ent->o.y; }
        float bottom() const { return ent->o.z - ent->eyeheight - zmargin; }
        float top() const { return ent->o.z + ent->aboveeye; }
    };

    struct EntFuzzy : Ent
    {
        EntFuzzy(physent *ent) : Ent(ent) {}

        float left() const { return ent->o.x - ent->radius; }
        float right() const { return ent->o.x + ent->radius; }
        float back() const { return ent->o.y - ent->radius; }
        float front() const { return ent->o.y + ent->radius; }
        float bottom() const { return ent->o.z - ent->eyeheight; }
        float top() const { return ent->o.z + ent->aboveeye; }
    };

    struct EntCylinder : EntFuzzy
    {
        float zmargin;

        EntCylinder(physent *ent, float zmargin = 0) : EntFuzzy(ent), zmargin(zmargin) {}

        vec center() const { return vec(ent->o.x, ent->o.y, ent->o.z + (ent->aboveeye - ent->eyeheight - zmargin)/2); }

        float bottom() const { return ent->o.z - ent->eyeheight - zmargin; }

        vec contactface(const vec &n, const vec &dir) const
        {
            float dxy = n.dot2(n)/(ent->radius*ent->radius), dz = n.z*n.z*4/(ent->aboveeye + ent->eyeheight + zmargin);
            vec fn(0, 0, 0);
            if(dz > dxy && dir.z) fn.z = n.z*dir.z < 0 ? (n.z > 0 ? 1 : -1) : 0;
            else if(n.dot2(dir) < 0)
            {
                fn.x = n.x;
                fn.y = n.y;
                fn.normalize();
            }
            return fn;
        }

        vec supportpoint(const vec &n) const
        {
            vec p(ent->o);
            if(n.z > 0) p.z += ent->aboveeye;
            else p.z -= ent->eyeheight + zmargin;
            if(n.x || n.y)
            {
                float r = ent->radius / n.magnitude2();
                p.x += n.x*r;
                p.y += n.y*r;
            }
            return p;
        }
    };

    struct EntCapsule : EntFuzzy
    {
        EntCapsule(physent *ent) : EntFuzzy(ent) {}

        vec supportpoint(const vec &n) const
        {
            vec p(ent->o);
            if(n.z > 0) p.z += ent->aboveeye - ent->radius;
            else p.z -= ent->eyeheight - ent->radius;
            p.add(vec(n).mul(ent->radius / n.magnitude()));
            return p;
        }
    };

    struct EntEllipsoid : EntFuzzy
    {
        EntEllipsoid(physent *ent) : EntFuzzy(ent) {}

        vec supportpoint(const vec &dir) const
        {
            vec p(ent->o), n = vec(dir).normalize();
            p.x += ent->radius*n.x;
            p.y += ent->radius*n.y;
            p.z += (ent->aboveeye + ent->eyeheight)/2*(1 + n.z) - ent->eyeheight;
            return p;
        }
    };

    struct Model
    {
        vec o, radius;
        matrix3 orient;

        Model(const vec &ent, const vec &center, const vec &radius, int yaw) : o(ent), radius(radius)
        {
            orient.setyaw(yaw*RAD);
            o.add(orient.transposedtransform(center));
        }

        vec center() const { return o; }
    };

    struct ModelOBB : Model
    {
        ModelOBB(const vec &ent, const vec &center, const vec &radius, int yaw) :
            Model(ent, center, radius, yaw)
        {}

        vec contactface(const vec &wn, const vec &wdir) const
        {
            vec n = orient.transform(wn).div(radius), dir = orient.transform(wdir),
                an(fabs(n.x), fabs(n.y), dir.z ? fabs(n.z) : 0),
                fn(0, 0, 0);
            if(an.x > an.y)
            {
                if(an.x > an.z) fn.x = n.x*dir.x < 0 ? (n.x > 0 ? 1 : -1) : 0;
                else if(an.z > 0) fn.z = n.z*dir.z < 0 ? (n.z > 0 ? 1 : -1) : 0;
            }
            else if(an.y > an.z) fn.y = n.y*dir.y < 0 ? (n.y > 0 ? 1 : -1) : 0;
            else if(an.z > 0) fn.z = n.z*dir.z < 0 ? (n.z > 0 ? 1 : -1) : 0;
            return orient.transposedtransform(fn);
        }

        vec supportpoint(const vec &n) const
        {
            vec ln = orient.transform(n), p(0, 0, 0);
            if(ln.x > 0) p.x += radius.x;
            else p.x -= radius.x;
            if(ln.y > 0) p.y += radius.y;
            else p.y -= radius.y;
            if(ln.z > 0) p.z += radius.z;
            else p.z -= radius.z;
            return orient.transposedtransform(p).add(o);
        }
    };

    struct ModelEllipse : Model
    {
        ModelEllipse(const vec &ent, const vec &center, const vec &radius, int yaw) :
            Model(ent, center, radius, yaw)
        {}

        vec contactface(const vec &wn, const vec &wdir) const
        {
            vec n = orient.transform(wn).div(radius), dir = orient.transform(wdir);
            float dxy = n.dot2(n), dz = n.z*n.z;
            vec fn(0, 0, 0);
            if(dz > dxy && dir.z) fn.z = n.z*dir.z < 0 ? (n.z > 0 ? 1 : -1) : 0;
            else if(n.dot2(dir) < 0)
            {
                fn.x = n.x*radius.y;
                fn.y = n.y*radius.x;
                fn.normalize();
            }
            return orient.transposedtransform(fn);
        }

        vec supportpoint(const vec &n) const
        {
            vec ln = orient.transform(n), p(0, 0, 0);
            if(ln.z > 0) p.z += radius.z;
            else p.z -= radius.z;
            if(ln.x || ln.y)
            {
                float r = ln.magnitude2();
                p.x += ln.x*radius.x/r;
                p.y += ln.y*radius.y/r;
            }
            return orient.transposedtransform(p).add(o);
        }
    };

    const float boundarytolerance = 1e-3f;

    template<class T, class U>
    bool collide(const T &p1, const U &p2)
    {
        // v0 = center of Minkowski difference
        vec v0 = p2.center().sub(p1.center());
        if(v0.iszero()) return true;  // v0 and origin overlap ==> hit

        // v1 = support in direction of origin
        vec n = vec(v0).neg();
        vec v1 = p2.supportpoint(n).sub(p1.supportpoint(vec(n).neg()));
        if(v1.dot(n) <= 0) return false;  // origin outside v1 support plane ==> miss

        // v2 = support perpendicular to plane containing origin, v0 and v1
        n.cross(v1, v0);
        if(n.iszero()) return true;   // v0, v1 and origin colinear (and origin inside v1 support plane) == > hit
        vec v2 = p2.supportpoint(n).sub(p1.supportpoint(vec(n).neg()));
        if(v2.dot(n) <= 0) return false;  // origin outside v2 support plane ==> miss

        // v3 = support perpendicular to plane containing v0, v1 and v2
        n.cross(v0, v1, v2);

        // If the origin is on the - side of the plane, reverse the direction of the plane
        if(n.dot(v0) > 0)
        {
            swap(v1, v2);
            n.neg();
        }

        ///
        // Phase One: Find a valid portal

        loopi(100)
        {
            // Obtain the next support point
            vec v3 = p2.supportpoint(n).sub(p1.supportpoint(vec(n).neg()));
            if(v3.dot(n) <= 0) return false;  // origin outside v3 support plane ==> miss

            // If origin is outside (v1,v0,v3), then portal is invalid -- eliminate v2 and find new support outside face
            vec v3xv0;
            v3xv0.cross(v3, v0);
            if(v1.dot(v3xv0) < 0)
            {
                v2 = v3;
                n.cross(v0, v1, v3);
                continue;
            }

            // If origin is outside (v3,v0,v2), then portal is invalid -- eliminate v1 and find new support outside face
            if(v2.dot(v3xv0) > 0)
            {
                v1 = v3;
                n.cross(v0, v3, v2);
                continue;
            }

            ///
            // Phase Two: Refine the portal

            for(int j = 0;; j++)
            {
                // Compute outward facing normal of the portal
                n.cross(v1, v2, v3);

                // If the origin is inside the portal, we have a hit
                if(n.dot(v1) >= 0) return true;

                n.normalize();

                // Find the support point in the direction of the portal's normal
                vec v4 = p2.supportpoint(n).sub(p1.supportpoint(vec(n).neg()));

                // If the origin is outside the support plane or the boundary is thin enough, we have a miss
                if(v4.dot(n) <= 0 || vec(v4).sub(v3).dot(n) <= boundarytolerance || j > 100) return false;

                // Test origin against the three planes that separate the new portal candidates: (v1,v4,v0) (v2,v4,v0) (v3,v4,v0)
                // Note:  We're taking advantage of the triple product identities here as an optimization
                //        (v1 % v4) * v0 == v1 * (v4 % v0)    > 0 if origin inside (v1, v4, v0)
                //        (v2 % v4) * v0 == v2 * (v4 % v0)    > 0 if origin inside (v2, v4, v0)
                //        (v3 % v4) * v0 == v3 * (v4 % v0)    > 0 if origin inside (v3, v4, v0)
                vec v4xv0;
                v4xv0.cross(v4, v0);
                if(v1.dot(v4xv0) > 0)
                {
                    if(v2.dot(v4xv0) > 0) v1 = v4;    // Inside v1 & inside v2 ==> eliminate v1
                    else v3 = v4;                   // Inside v1 & outside v2 ==> eliminate v3
                }
                else
                {
                    if(v3.dot(v4xv0) > 0) v2 = v4;    // Outside v1 & inside v3 ==> eliminate v2
                    else v1 = v4;                   // Outside v1 & outside v3 ==> eliminate v1
                }
            }
        }
        return false;
    }

    template<class T, class U>
    bool collide(const T &p1, const U &p2, vec *contactnormal, vec *contactpoint1, vec *contactpoint2)
    {
        // v0 = center of Minkowski sum
        vec v01 = p1.center();
        vec v02 = p2.center();
        vec v0 = vec(v02).sub(v01);

        // Avoid case where centers overlap -- any direction is fine in this case
        if(v0.iszero()) v0 = vec(0, 0, 1e-5f);

        // v1 = support in direction of origin
        vec n = vec(v0).neg();
        vec v11 = p1.supportpoint(vec(n).neg());
        vec v12 = p2.supportpoint(n);
        vec v1 = vec(v12).sub(v11);
        if(v1.dot(n) <= 0)
        {
            if(contactnormal) *contactnormal = n;
            return false;
        }

        // v2 - support perpendicular to v1,v0
        n.cross(v1, v0);
        if(n.iszero())
        {
            n = vec(v1).sub(v0);
            n.normalize();
            if(contactnormal) *contactnormal = n;
            if(contactpoint1) *contactpoint1 = v11;
            if(contactpoint2) *contactpoint2 = v12;
            return true;
        }
        vec v21 = p1.supportpoint(vec(n).neg());
        vec v22 = p2.supportpoint(n);
        vec v2 = vec(v22).sub(v21);
        if(v2.dot(n) <= 0)
        {
            if(contactnormal) *contactnormal = n;
            return false;
        }

        // Determine whether origin is on + or - side of plane (v1,v0,v2)
        n.cross(v0, v1, v2);
        ASSERT( !n.iszero() );
        // If the origin is on the - side of the plane, reverse the direction of the plane
        if(n.dot(v0) > 0)
        {
            swap(v1, v2);
            swap(v11, v21);
            swap(v12, v22);
            n.neg();
        }

        ///
        // Phase One: Identify a portal

        loopi(100)
        {
            // Obtain the support point in a direction perpendicular to the existing plane
            // Note: This point is guaranteed to lie off the plane
            vec v31 = p1.supportpoint(vec(n).neg());
            vec v32 = p2.supportpoint(n);
            vec v3 = vec(v32).sub(v31);
            if(v3.dot(n) <= 0)
            {
                if(contactnormal) *contactnormal = n;
                return false;
            }

            // If origin is outside (v1,v0,v3), then eliminate v2 and loop
            vec v3xv0;
            v3xv0.cross(v3, v0);
            if(v1.dot(v3xv0) < 0)
            {
                v2 = v3;
                v21 = v31;
                v22 = v32;
                n.cross(v0, v1, v3);
                continue;
            }

            // If origin is outside (v3,v0,v2), then eliminate v1 and loop
            if(v2.dot(v3xv0) > 0)
            {
                v1 = v3;
                v11 = v31;
                v12 = v32;
                n.cross(v0, v3, v2);
                continue;
            }

            bool hit = false;

            ///
            // Phase Two: Refine the portal

            // We are now inside of a wedge...
            for(int j = 0;; j++)
            {
                // Compute normal of the wedge face
                n.cross(v1, v2, v3);

                // Can this happen???  Can it be handled more cleanly?
                if(n.iszero())
                {
                    ASSERT(0);
                    return true;
                }

                n.normalize();

                // If the origin is inside the wedge, we have a hit
                if(n.dot(v1) >= 0 && !hit)
                {
                    if(contactnormal) *contactnormal = n;

                    // Compute the barycentric coordinates of the origin
                    if(contactpoint1 || contactpoint2)
                    {
                        float b0 = v3.scalartriple(v1, v2),
                              b1 = v0.scalartriple(v3, v2),
                              b2 = v3.scalartriple(v0, v1),
                              b3 = v0.scalartriple(v2, v1),
                              sum = b0 + b1 + b2 + b3;
                        if(sum <= 0)
                        {
                            b0 = 0;
                            b1 = n.scalartriple(v2, v3);
                            b2 = n.scalartriple(v3, v1);
                            b3 = n.scalartriple(v1, v2);
                            sum = b1 + b2 + b3;
                        }
                        if(contactpoint1)
                            *contactpoint1 = (vec(v01).mul(b0).add(vec(v11).mul(b1)).add(vec(v21).mul(b2)).add(vec(v31).mul(b3))).mul(1.0f/sum);
                        if(contactpoint2)
                            *contactpoint2 = (vec(v02).mul(b0).add(vec(v12).mul(b1)).add(vec(v22).mul(b2)).add(vec(v32).mul(b3))).mul(1.0f/sum);
                    }

                    // HIT!!!
                    hit = true;
                }

                // Find the support point in the direction of the wedge face
                vec v41 = p1.supportpoint(vec(n).neg());
                vec v42 = p2.supportpoint(n);
                vec v4 = vec(v42).sub(v41);

                // If the boundary is thin enough or the origin is outside the support plane for the newly discovered vertex, then we can terminate
                if(v4.dot(n) <= 0 || vec(v4).sub(v3).dot(n) <= boundarytolerance || j > 100)
                {
                    if(contactnormal) *contactnormal = n;
                    return hit;
                }

                // Test origin against the three planes that separate the new portal candidates: (v1,v4,v0) (v2,v4,v0) (v3,v4,v0)
                // Note:  We're taking advantage of the triple product identities here as an optimization
                //        (v1 % v4) * v0 == v1 * (v4 % v0)    > 0 if origin inside (v1, v4, v0)
                //        (v2 % v4) * v0 == v2 * (v4 % v0)    > 0 if origin inside (v2, v4, v0)
                //        (v3 % v4) * v0 == v3 * (v4 % v0)    > 0 if origin inside (v3, v4, v0)
                vec v4xv0;
                v4xv0.cross(v4, v0);
                if(v1.dot(v4xv0) > 0) // Compute the tetrahedron dividing face d1 = (v4,v0,v1)
                {
                    if(v2.dot(v4xv0) > 0) // Compute the tetrahedron dividing face d2 = (v4,v0,v2)
                    {
                        // Inside d1 & inside d2 ==> eliminate v1
                        v1 = v4;
                        v11 = v41;
                        v12 = v42;
                    }
                    else
                    {
                        // Inside d1 & outside d2 ==> eliminate v3
                        v3 = v4;
                        v31 = v41;
                        v32 = v42;
                    }
                }
                else
                {
                    if(v3.dot(v4xv0) > 0) // Compute the tetrahedron dividing face d3 = (v4,v0,v3)
                    {
                        // Outside d1 & inside d3 ==> eliminate v2
                        v2 = v4;
                        v21 = v41;
                        v22 = v42;
                    }
                    else
                    {
                        // Outside d1 & outside d3 ==> eliminate v1
                        v1 = v4;
                        v11 = v41;
                        v12 = v42;
                    }
                }
            }
        }
        return false;
    }
}