1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
|
// 6-directional octree heightfield map format
struct elementset
{
ushort texture, lmid, envmap;
uchar dim, layer;
ushort length[2], minvert[2], maxvert[2];
};
enum
{
EMID_NONE = 0,
EMID_CUSTOM,
EMID_SKY,
EMID_RESERVED
};
struct materialsurface
{
ivec o;
ushort csize, rsize;
ushort material, skip;
uchar orient, visible;
union
{
short index;
short depth;
};
union
{
entity *light;
ushort envmap;
uchar ends;
};
};
struct vertinfo
{
ushort x, y, z, u, v, norm;
void setxyz(ushort a, ushort b, ushort c) { x = a; y = b; z = c; }
void setxyz(const ivec &v) { setxyz(v.x, v.y, v.z); }
void set(ushort a, ushort b, ushort c, ushort s = 0, ushort t = 0, ushort n = 0) { setxyz(a, b, c); u = s; v = t; norm = n; }
void set(const ivec &v, ushort s = 0, ushort t = 0, ushort n = 0) { set(v.x, v.y, v.z, s, t, n); }
ivec getxyz() const { return ivec(x, y, z); }
};
enum
{
LAYER_TOP = (1<<5),
LAYER_BOTTOM = (1<<6),
LAYER_DUP = (1<<7),
LAYER_BLEND = LAYER_TOP|LAYER_BOTTOM,
MAXFACEVERTS = 15
};
enum { LMID_AMBIENT = 0, LMID_AMBIENT1, LMID_BRIGHT, LMID_BRIGHT1, LMID_DARK, LMID_DARK1, LMID_RESERVED };
struct surfaceinfo
{
uchar lmid[2];
uchar verts, numverts;
int totalverts() const { return numverts&LAYER_DUP ? (numverts&MAXFACEVERTS)*2 : numverts&MAXFACEVERTS; }
bool used() const { return lmid[0] != LMID_AMBIENT || lmid[1] != LMID_AMBIENT || numverts&~LAYER_TOP; }
void clear() { lmid[0] = LMID_AMBIENT; lmid[1] = LMID_AMBIENT; numverts = (numverts&MAXFACEVERTS) | LAYER_TOP; }
void brighten() { lmid[0] = LMID_BRIGHT; lmid[1] = LMID_AMBIENT; numverts = (numverts&MAXFACEVERTS) | LAYER_TOP; }
};
static const surfaceinfo ambientsurface = {{LMID_AMBIENT, LMID_AMBIENT}, 0, LAYER_TOP};
static const surfaceinfo brightsurface = {{LMID_BRIGHT, LMID_AMBIENT}, 0, LAYER_TOP};
static const surfaceinfo brightbottomsurface = {{LMID_AMBIENT, LMID_BRIGHT}, 0, LAYER_BOTTOM};
struct grasstri
{
vec v[4];
int numv;
vec4 tcu, tcv;
plane surface;
vec center;
float radius;
float minz, maxz;
ushort texture, lmid;
};
struct occludequery
{
void *owner;
GLuint id;
int fragments;
};
struct vtxarray;
struct octaentities
{
vector<int> mapmodels;
vector<int> other;
occludequery *query;
octaentities *next, *rnext;
int distance;
ivec o;
int size;
ivec bbmin, bbmax;
octaentities(const ivec &o, int size) : query(0), o(o), size(size), bbmin(o), bbmax(o)
{
bbmin.add(size);
}
};
enum
{
OCCLUDE_NOTHING = 0,
OCCLUDE_GEOM,
OCCLUDE_BB,
OCCLUDE_PARENT
};
enum
{
MERGE_ORIGIN = 1<<0,
MERGE_PART = 1<<1,
MERGE_USE = 1<<2
};
struct vtxarray
{
vtxarray *parent;
vector<vtxarray *> children;
vtxarray *next, *rnext; // linked list of visible VOBs
vertex *vdata; // vertex data
ushort voffset; // offset into vertex data
ushort *edata, *skydata; // vertex indices
GLuint vbuf, ebuf, skybuf; // VBOs
ushort minvert, maxvert; // DRE info
elementset *eslist; // List of element indices sets (range) per texture
materialsurface *matbuf; // buffer of material surfaces
int verts, tris, texs, blendtris, blends, alphabacktris, alphaback, alphafronttris, alphafront, alphatris, texmask, sky, explicitsky, skyfaces, skyclip, matsurfs, distance;
double skyarea;
ivec o;
int size; // location and size of cube.
ivec geommin, geommax; // BB of geom
ivec shadowmapmin, shadowmapmax; // BB of shadowmapped surfaces
ivec matmin, matmax; // BB of any materials
ivec bbmin, bbmax; // BB of everything including children
uchar curvfc, occluded;
occludequery *query;
vector<octaentities *> mapmodels;
vector<grasstri> grasstris;
int hasmerges, mergelevel;
uint dynlightmask;
bool shadowed;
};
struct cube;
struct clipplanes
{
vec o, r, v[8];
plane p[12];
uchar side[12];
uchar size, visible;
const cube *owner;
int version;
};
struct facebounds
{
ushort u1, u2, v1, v2;
bool empty() const { return u1 >= u2 || v1 >= v2; }
};
struct tjoint
{
int next;
ushort offset;
uchar edge;
};
struct cubeext
{
vtxarray *va; // vertex array for children, or NULL
octaentities *ents; // map entities inside cube
surfaceinfo surfaces[6]; // render info for each surface
int tjoints; // linked list of t-joints
uchar maxverts; // allocated space for verts
vertinfo *verts() { return (vertinfo *)(this+1); }
};
struct cube
{
cube *children; // points to 8 cube structures which are its children, or NULL. -Z first, then -Y, -X
cubeext *ext; // extended info for the cube
union
{
uchar edges[12]; // edges of the cube, each uchar is 2 4bit values denoting the range.
// see documentation jpgs for more info.
uint faces[3]; // 4 edges of each dimension together representing 2 perpendicular faces
};
ushort texture[6]; // one for each face. same order as orient.
ushort material; // empty-space material
uchar merged; // merged faces of the cube
union
{
uchar escaped; // mask of which children have escaped merges
uchar visible; // visibility info for faces
};
};
struct block3
{
ivec o, s;
int grid, orient;
block3() {}
block3(const selinfo &sel) : o(sel.o), s(sel.s), grid(sel.grid), orient(sel.orient) {}
cube *c() { return (cube *)(this+1); }
int size() const { return s.x*s.y*s.z; }
};
struct editinfo
{
block3 *copy;
editinfo() : copy(NULL) {}
};
struct undoent { int i; entity e; };
struct undoblock // undo header, all data sits in payload
{
undoblock *prev, *next;
int size, timestamp, numents; // if numents is 0, is a cube undo record, otherwise an entity undo record
block3 *block() { return (block3 *)(this + 1); }
uchar *gridmap()
{
block3 *ub = block();
return (uchar *)(ub->c() + ub->size());
}
undoent *ents() { return (undoent *)(this + 1); }
};
extern cube *worldroot; // the world data. only a ptr to 8 cubes (ie: like cube.children above)
extern int wtris, wverts, vtris, vverts, glde, gbatches, rplanes;
extern int allocnodes, allocva, selchildcount, selchildmat;
const uint F_EMPTY = 0; // all edges in the range (0,0)
const uint F_SOLID = 0x80808080; // all edges in the range (0,8)
#define isempty(c) ((c).faces[0]==F_EMPTY)
#define isentirelysolid(c) ((c).faces[0]==F_SOLID && (c).faces[1]==F_SOLID && (c).faces[2]==F_SOLID)
#define setfaces(c, face) { (c).faces[0] = (c).faces[1] = (c).faces[2] = face; }
#define solidfaces(c) setfaces(c, F_SOLID)
#define emptyfaces(c) setfaces(c, F_EMPTY)
#define edgemake(a, b) ((b)<<4|a)
#define edgeget(edge, coord) ((coord) ? (edge)>>4 : (edge)&0xF)
#define edgeset(edge, coord, val) ((edge) = ((coord) ? ((edge)&0xF)|((val)<<4) : ((edge)&0xF0)|(val)))
#define cubeedge(c, d, x, y) ((c).edges[(((d)<<2)+((y)<<1)+(x))])
#define octadim(d) (1<<(d)) // creates mask for bit of given dimension
#define octacoord(d, i) (((i)&octadim(d))>>(d))
#define oppositeocta(d, i) ((i)^octadim(D[d]))
#define octaindex(d,x,y,z) (((z)<<D[d])+((y)<<C[d])+((x)<<R[d]))
#define octastep(x, y, z, scale) (((((z)>>(scale))&1)<<2) | ((((y)>>(scale))&1)<<1) | (((x)>>(scale))&1))
static inline uchar octaboxoverlap(const ivec &o, int size, const ivec &bbmin, const ivec &bbmax)
{
uchar p = 0xFF; // bitmask of possible collisions with octants. 0 bit = 0 octant, etc
ivec mid = ivec(o).add(size);
if(mid.z <= bbmin.z) p &= 0xF0; // not in a -ve Z octant
else if(mid.z >= bbmax.z) p &= 0x0F; // not in a +ve Z octant
if(mid.y <= bbmin.y) p &= 0xCC; // not in a -ve Y octant
else if(mid.y >= bbmax.y) p &= 0x33; // etc..
if(mid.x <= bbmin.x) p &= 0xAA;
else if(mid.x >= bbmax.x) p &= 0x55;
return p;
}
#define loopoctabox(o, size, bbmin, bbmax) uchar possible = octaboxoverlap(o, size, bbmin, bbmax); loopi(8) if(possible&(1<<i))
#define loopoctaboxsize(o, size, bborigin, bbsize) uchar possible = octaboxoverlap(o, size, bborigin, ivec(bborigin).add(bbsize)); loopi(8) if(possible&(1<<i))
enum
{
O_LEFT = 0,
O_RIGHT,
O_BACK,
O_FRONT,
O_BOTTOM,
O_TOP
};
#define dimension(orient) ((orient)>>1)
#define dimcoord(orient) ((orient)&1)
#define opposite(orient) ((orient)^1)
enum
{
VFC_FULL_VISIBLE = 0,
VFC_PART_VISIBLE,
VFC_FOGGED,
VFC_NOT_VISIBLE,
PVS_FULL_VISIBLE,
PVS_PART_VISIBLE,
PVS_FOGGED
};
#define GENCUBEVERTS(x0,x1, y0,y1, z0,z1) \
GENCUBEVERT(0, x1, y1, z0) \
GENCUBEVERT(1, x0, y1, z0) \
GENCUBEVERT(2, x0, y1, z1) \
GENCUBEVERT(3, x1, y1, z1) \
GENCUBEVERT(4, x1, y0, z1) \
GENCUBEVERT(5, x0, y0, z1) \
GENCUBEVERT(6, x0, y0, z0) \
GENCUBEVERT(7, x1, y0, z0)
#define GENFACEVERTX(o,n, x,y,z, xv,yv,zv) GENFACEVERT(o,n, x,y,z, xv,yv,zv)
#define GENFACEVERTSX(x0,x1, y0,y1, z0,z1, c0,c1, r0,r1, d0,d1) \
GENFACEORIENT(0, GENFACEVERTX(0,0, x0,y1,z1, d0,r1,c1), GENFACEVERTX(0,1, x0,y1,z0, d0,r1,c0), GENFACEVERTX(0,2, x0,y0,z0, d0,r0,c0), GENFACEVERTX(0,3, x0,y0,z1, d0,r0,c1)) \
GENFACEORIENT(1, GENFACEVERTX(1,0, x1,y1,z1, d1,r1,c1), GENFACEVERTX(1,1, x1,y0,z1, d1,r0,c1), GENFACEVERTX(1,2, x1,y0,z0, d1,r0,c0), GENFACEVERTX(1,3, x1,y1,z0, d1,r1,c0))
#define GENFACEVERTY(o,n, x,y,z, xv,yv,zv) GENFACEVERT(o,n, x,y,z, xv,yv,zv)
#define GENFACEVERTSY(x0,x1, y0,y1, z0,z1, c0,c1, r0,r1, d0,d1) \
GENFACEORIENT(2, GENFACEVERTY(2,0, x1,y0,z1, c1,d0,r1), GENFACEVERTY(2,1, x0,y0,z1, c0,d0,r1), GENFACEVERTY(2,2, x0,y0,z0, c0,d0,r0), GENFACEVERTY(2,3, x1,y0,z0, c1,d0,r0)) \
GENFACEORIENT(3, GENFACEVERTY(3,0, x0,y1,z0, c0,d1,r0), GENFACEVERTY(3,1, x0,y1,z1, c0,d1,r1), GENFACEVERTY(3,2, x1,y1,z1, c1,d1,r1), GENFACEVERTY(3,3, x1,y1,z0, c1,d1,r0))
#define GENFACEVERTZ(o,n, x,y,z, xv,yv,zv) GENFACEVERT(o,n, x,y,z, xv,yv,zv)
#define GENFACEVERTSZ(x0,x1, y0,y1, z0,z1, c0,c1, r0,r1, d0,d1) \
GENFACEORIENT(4, GENFACEVERTZ(4,0, x0,y0,z0, r0,c0,d0), GENFACEVERTZ(4,1, x0,y1,z0, r0,c1,d0), GENFACEVERTZ(4,2, x1,y1,z0, r1,c1,d0), GENFACEVERTZ(4,3, x1,y0,z0, r1,c0,d0)) \
GENFACEORIENT(5, GENFACEVERTZ(5,0, x0,y0,z1, r0,c0,d1), GENFACEVERTZ(5,1, x1,y0,z1, r1,c0,d1), GENFACEVERTZ(5,2, x1,y1,z1, r1,c1,d1), GENFACEVERTZ(5,3, x0,y1,z1, r0,c1,d1))
#define GENFACEVERTSXY(x0,x1, y0,y1, z0,z1, c0,c1, r0,r1, d0,d1) \
GENFACEVERTSX(x0,x1, y0,y1, z0,z1, c0,c1, r0,r1, d0,d1) \
GENFACEVERTSY(x0,x1, y0,y1, z0,z1, c0,c1, r0,r1, d0,d1)
#define GENFACEVERTS(x0,x1, y0,y1, z0,z1, c0,c1, r0,r1, d0,d1) \
GENFACEVERTSXY(x0,x1, y0,y1, z0,z1, c0,c1, r0,r1, d0,d1) \
GENFACEVERTSZ(x0,x1, y0,y1, z0,z1, c0,c1, r0,r1, d0,d1)
|