File: crypto.cpp

package info (click to toggle)
cube2 0.0.20201227%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 5,448 kB
  • sloc: cpp: 76,148; ansic: 24,923; makefile: 949; sh: 16
file content (944 lines) | stat: -rw-r--r-- 28,569 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
#include "cube.h"

///////////////////////// cryptography /////////////////////////////////

/* Based off the reference implementation of Tiger, a cryptographically
 * secure 192 bit hash function by Ross Anderson and Eli Biham. More info at:
 * http://www.cs.technion.ac.il/~biham/Reports/Tiger/
 */

#define TIGER_PASSES 3

namespace tiger
{
    typedef unsigned long long int chunk;

    union hashval
    {
        uchar bytes[3*8];
        chunk chunks[3];
    };

    chunk sboxes[4*256];

    void compress(const chunk *str, chunk state[3])
    {
        chunk a, b, c;
        chunk aa, bb, cc;
        chunk x0, x1, x2, x3, x4, x5, x6, x7;

        a = state[0];
        b = state[1];
        c = state[2];

        x0=str[0]; x1=str[1]; x2=str[2]; x3=str[3];
        x4=str[4]; x5=str[5]; x6=str[6]; x7=str[7];

        aa = a;
        bb = b;
        cc = c;

        loop(pass_no, TIGER_PASSES)
        {
            if(pass_no)
            {
                x0 -= x7 ^ 0xA5A5A5A5A5A5A5A5ULL; x1 ^= x0; x2 += x1; x3 -= x2 ^ ((~x1)<<19);
                x4 ^= x3; x5 += x4; x6 -= x5 ^ ((~x4)>>23); x7 ^= x6;
                x0 += x7; x1 -= x0 ^ ((~x7)<<19); x2 ^= x1; x3 += x2;
                x4 -= x3 ^ ((~x2)>>23); x5 ^= x4; x6 += x5; x7 -= x6 ^ 0x0123456789ABCDEFULL;
            }

#define sb1 (sboxes)
#define sb2 (sboxes+256)
#define sb3 (sboxes+256*2)
#define sb4 (sboxes+256*3)

#define round(a, b, c, x) \
      c ^= x; \
      a -= sb1[((c)>>(0*8))&0xFF] ^ sb2[((c)>>(2*8))&0xFF] ^ \
       sb3[((c)>>(4*8))&0xFF] ^ sb4[((c)>>(6*8))&0xFF] ; \
      b += sb4[((c)>>(1*8))&0xFF] ^ sb3[((c)>>(3*8))&0xFF] ^ \
       sb2[((c)>>(5*8))&0xFF] ^ sb1[((c)>>(7*8))&0xFF] ; \
      b *= mul;

            uint mul = !pass_no ? 5 : (pass_no==1 ? 7 : 9);
            round(a, b, c, x0) round(b, c, a, x1) round(c, a, b, x2) round(a, b, c, x3)
            round(b, c, a, x4) round(c, a, b, x5) round(a, b, c, x6) round(b, c, a, x7)

            chunk tmp = a; a = c; c = b; b = tmp;
        }

        a ^= aa;
        b -= bb;
        c += cc;

        state[0] = a;
        state[1] = b;
        state[2] = c;
    }

    void gensboxes()
    {
        const char *str = "Tiger - A Fast New Hash Function, by Ross Anderson and Eli Biham";
        chunk state[3] = { 0x0123456789ABCDEFULL, 0xFEDCBA9876543210ULL, 0xF096A5B4C3B2E187ULL };
        uchar temp[64];

        if(!*(const uchar *)&islittleendian) loopj(64) temp[j^7] = str[j];
        else loopj(64) temp[j] = str[j];
        loopi(1024) loop(col, 8) ((uchar *)&sboxes[i])[col] = i&0xFF;

        int abc = 2;
        loop(pass, 5) loopi(256) for(int sb = 0; sb < 1024; sb += 256)
        {
            abc++;
            if(abc >= 3) { abc = 0; compress((chunk *)temp, state); }
            loop(col, 8)
            {
                uchar val = ((uchar *)&sboxes[sb+i])[col];
                ((uchar *)&sboxes[sb+i])[col] = ((uchar *)&sboxes[sb + ((uchar *)&state[abc])[col]])[col];
                ((uchar *)&sboxes[sb + ((uchar *)&state[abc])[col]])[col] = val;
            }
        }
    }

    void hash(const uchar *str, int length, hashval &val)
    {
        static bool init = false;
        if(!init) { gensboxes(); init = true; }

        uchar temp[64];

        val.chunks[0] = 0x0123456789ABCDEFULL;
        val.chunks[1] = 0xFEDCBA9876543210ULL;
        val.chunks[2] = 0xF096A5B4C3B2E187ULL;

        int i = length;
        for(; i >= 64; i -= 64, str += 64)
        {
            if(!*(const uchar *)&islittleendian)
            {
                loopj(64) temp[j^7] = str[j];
                compress((chunk *)temp, val.chunks);
            }
            else compress((chunk *)str, val.chunks);
        }

        int j;
        if(!*(const uchar *)&islittleendian)
        {
            for(j = 0; j < i; j++) temp[j^7] = str[j];
            temp[j^7] = 0x01;
            while(++j&7) temp[j^7] = 0;
        }
        else
        {
            for(j = 0; j < i; j++) temp[j] = str[j];
            temp[j] = 0x01;
            while(++j&7) temp[j] = 0;
        }

        if(j > 56)
        {
            while(j < 64) temp[j++] = 0;
            compress((chunk *)temp, val.chunks);
            j = 0;
        }
        while(j < 56) temp[j++] = 0;
        *(chunk *)(temp+56) = (chunk)length<<3;
        compress((chunk *)temp, val.chunks);
        if(!*(const uchar *)&islittleendian)
        {
            loopk(3) 
            {
                uchar *c = &val.bytes[k*sizeof(chunk)];
                loopl(sizeof(chunk)/2) swap(c[l], c[sizeof(chunk)-1-l]);
            }
        }
    }
}

/* Elliptic curve cryptography based on NIST DSS prime curves. */

#define BI_DIGIT_BITS 16
#define BI_DIGIT_MASK ((1<<BI_DIGIT_BITS)-1)

template<int BI_DIGITS> struct bigint
{
    typedef ushort digit;
    typedef uint dbldigit;

    int len;
    digit digits[BI_DIGITS];

    bigint() {}
    bigint(digit n) { if(n) { len = 1; digits[0] = n; } else len = 0; }
    bigint(const char *s) { parse(s); }
    template<int Y_DIGITS> bigint(const bigint<Y_DIGITS> &y) { *this = y; }

    static int parsedigits(ushort *digits, int maxlen, const char *s)
    {
        int slen = 0;
        while(isxdigit(s[slen])) slen++;
        int len = (slen+2*sizeof(ushort)-1)/(2*sizeof(ushort));
        if(len>maxlen) return 0;
        memset(digits, 0, len*sizeof(ushort));
        loopi(slen)
        {
            int c = s[slen-i-1];
            if(isalpha(c)) c = toupper(c) - 'A' + 10;
            else if(isdigit(c)) c -= '0';
            else return 0;
            digits[i/(2*sizeof(ushort))] |= c<<(4*(i%(2*sizeof(ushort))));
        }
        return len;
    }

    void parse(const char *s)
    {
        len = parsedigits(digits, BI_DIGITS, s);
        shrink();
    }

    void zero() { len = 0; }

    void print(stream *out) const
    {
        vector<char> buf;
        printdigits(buf);
        out->write(buf.getbuf(), buf.length());
    }

    void printdigits(vector<char> &buf) const
    {
        loopi(len)
        {
            digit d = digits[len-i-1];
            loopj(BI_DIGIT_BITS/4)
            {
                uint shift = BI_DIGIT_BITS - (j+1)*4;
                int val = (d >> shift) & 0xF;
                if(val < 10) buf.add('0' + val);
                else buf.add('a' + val - 10);
            }
        }
    }

    template<int Y_DIGITS> bigint &operator=(const bigint<Y_DIGITS> &y)
    {
        len = y.len;
        memcpy(digits, y.digits, len*sizeof(digit));
        return *this;
    }

    bool iszero() const { return !len; }
    bool isone() const { return len==1 && digits[0]==1; }

    int numbits() const
    {
        if(!len) return 0;
        int bits = len*BI_DIGIT_BITS;
        digit last = digits[len-1], mask = 1<<(BI_DIGIT_BITS-1);
        while(mask)
        {
            if(last&mask) return bits;
            bits--;
            mask >>= 1;
        }
        return 0;
    }

    bool hasbit(int n) const { return n/BI_DIGIT_BITS < len && ((digits[n/BI_DIGIT_BITS]>>(n%BI_DIGIT_BITS))&1); }

    bool morebits(int n) const { return len > n/BI_DIGIT_BITS; }

    template<int X_DIGITS, int Y_DIGITS> bigint &add(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
    {
        dbldigit carry = 0;
        int maxlen = max(x.len, y.len), i;
        for(i = 0; i < y.len || carry; i++)
        {
             carry += (i < x.len ? (dbldigit)x.digits[i] : 0) + (i < y.len ? (dbldigit)y.digits[i] : 0);
             digits[i] = (digit)carry;
             carry >>= BI_DIGIT_BITS;
        }
        if(i < x.len && this != &x) memcpy(&digits[i], &x.digits[i], (x.len - i)*sizeof(digit));
        len = max(i, maxlen);
        return *this;
    }
    template<int Y_DIGITS> bigint &add(const bigint<Y_DIGITS> &y) { return add(*this, y); }

    template<int X_DIGITS, int Y_DIGITS> bigint &sub(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
    {
        ASSERT(x >= y);
        dbldigit borrow = 0;
        int i;
        for(i = 0; i < y.len || borrow; i++)
        {
             borrow = (1<<BI_DIGIT_BITS) + (dbldigit)x.digits[i] - (i<y.len ? (dbldigit)y.digits[i] : 0) - borrow;
             digits[i] = (digit)borrow;
             borrow = (borrow>>BI_DIGIT_BITS)^1;
        }
        if(i < x.len && this != &x) memcpy(&digits[i], &x.digits[i], (x.len - i)*sizeof(digit));
        len = x.len;
        shrink();
        return *this;
    }
    template<int Y_DIGITS> bigint &sub(const bigint<Y_DIGITS> &y) { return sub(*this, y); }

    void shrink() { while(len > 0 && !digits[len-1]) len--; }
    void shrinkdigits(int n) { len = n; shrink(); }
    void shrinkbits(int n) { shrinkdigits(n/BI_DIGIT_BITS); }

    template<int Y_DIGITS> void copyshrinkdigits(const bigint<Y_DIGITS> &y, int n)
    {
        len = clamp(y.len, 0, n);
        memcpy(digits, y.digits, len*sizeof(digit));
        shrink();
    }
    template<int Y_DIGITS> void copyshrinkbits(const bigint<Y_DIGITS> &y, int n)
    {
        copyshrinkdigits(y, n/BI_DIGIT_BITS);
    }
    
    template<int X_DIGITS, int Y_DIGITS> bigint &mul(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
    {
        if(!x.len || !y.len) { len = 0; return *this; }
        memset(digits, 0, y.len*sizeof(digit));
        loopi(x.len)
        {
            dbldigit carry = 0;
            loopj(y.len)
            {
                carry += (dbldigit)x.digits[i] * (dbldigit)y.digits[j] + (dbldigit)digits[i+j];
                digits[i+j] = (digit)carry;
                carry >>= BI_DIGIT_BITS;
            }
            digits[i+y.len] = carry;
        }
        len = x.len + y.len;
        shrink();
        return *this;
    }

    bigint &rshift(int n)
    {
        assert(len <= BI_DIGITS);
        if(!len || n<=0) return *this;
        if(n >= len*BI_DIGIT_BITS) { len = 0; return *this; }
        int dig = (n-1)/BI_DIGIT_BITS;
        n = ((n-1) % BI_DIGIT_BITS)+1;
        digit carry = digit(digits[dig]>>n);
        for(int i = dig+1; i < len; i++)
        {
            digit tmp = digits[i];
            digits[i-dig-1] = digit((tmp<<(BI_DIGIT_BITS-n)) | carry);
            carry = digit(tmp>>n);
        }
        digits[len-dig-1] = carry;
        len -= dig + (n/BI_DIGIT_BITS);
        shrink();
        return *this;
    }

    bigint &lshift(int n)
    {
        if(!len || n<=0) return *this;
        int dig = n/BI_DIGIT_BITS;
        n %= BI_DIGIT_BITS;
        digit carry = 0;
        loopirev(len)
        {
            digit tmp = digits[i];
            digits[i+dig] = digit((tmp<<n) | carry);
            carry = digit(tmp>>(BI_DIGIT_BITS-n));
        }
        len += dig;
        if(carry) digits[len++] = carry;
        if(dig) memset(digits, 0, dig*sizeof(digit));
        return *this;
    }

    void zerodigits(int i, int n)
    {
        memset(&digits[i], 0, n*sizeof(digit));
    }
    void zerobits(int i, int n)
    {
        zerodigits(i/BI_DIGIT_BITS, n/BI_DIGIT_BITS); 
    }
    
    template<int Y_DIGITS> void copydigits(int to, const bigint<Y_DIGITS> &y, int from, int n)
    {
        int avail = clamp(y.len-from, 0, n);
        memcpy(&digits[to], &y.digits[from], avail*sizeof(digit));
        if(avail < n) memset(&digits[to+avail], 0, (n-avail)*sizeof(digit));
    }
    template<int Y_DIGITS> void copybits(int to, const bigint<Y_DIGITS> &y, int from, int n)
    {
        copydigits(to/BI_DIGIT_BITS, y, from/BI_DIGIT_BITS, n/BI_DIGIT_BITS);
    }

    void dupdigits(int to, int from, int n)
    {
        memcpy(&digits[to], &digits[from], n*sizeof(digit));
    }
    void dupbits(int to, int from, int n)
    {
        dupdigits(to/BI_DIGIT_BITS, from/BI_DIGIT_BITS, n/BI_DIGIT_BITS);
    }

    template<int Y_DIGITS> bool operator==(const bigint<Y_DIGITS> &y) const
    {
        if(len!=y.len) return false;
        loopirev(len) if(digits[i]!=y.digits[i]) return false;
        return true;
    }
    template<int Y_DIGITS> bool operator!=(const bigint<Y_DIGITS> &y) const { return !(*this==y); }
    template<int Y_DIGITS> bool operator<(const bigint<Y_DIGITS> &y) const
    {
        if(len<y.len) return true;
        if(len>y.len) return false;
        loopirev(len)
        {
            if(digits[i]<y.digits[i]) return true;
            if(digits[i]>y.digits[i]) return false;
        }
        return false;
    }
    template<int Y_DIGITS> bool operator>(const bigint<Y_DIGITS> &y) const { return y<*this; }
    template<int Y_DIGITS> bool operator<=(const bigint<Y_DIGITS> &y) const { return !(y<*this); }
    template<int Y_DIGITS> bool operator>=(const bigint<Y_DIGITS> &y) const { return !(*this<y); }
};

#define GF_BITS         192
#define GF_DIGITS       ((GF_BITS+BI_DIGIT_BITS-1)/BI_DIGIT_BITS)

typedef bigint<GF_DIGITS+1> gfint;

/* NIST prime Galois fields.
 * Currently only supports NIST P-192, where P=2^192-2^64-1, and P-256, where P=2^256-2^224+2^192+2^96-1.
 */
struct gfield : gfint
{
    static const gfield P;

    gfield() {}
    gfield(digit n) : gfint(n) {}
    gfield(const char *s) : gfint(s) {}

    template<int Y_DIGITS> gfield(const bigint<Y_DIGITS> &y) : gfint(y) {}

    template<int Y_DIGITS> gfield &operator=(const bigint<Y_DIGITS> &y)
    {
        gfint::operator=(y);
        return *this;
    }

    template<int X_DIGITS, int Y_DIGITS> gfield &add(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
    {
        gfint::add(x, y);
        if(*this >= P) gfint::sub(*this, P);
        return *this;
    }
    template<int Y_DIGITS> gfield &add(const bigint<Y_DIGITS> &y) { return add(*this, y); }

    template<int X_DIGITS> gfield &mul2(const bigint<X_DIGITS> &x) { return add(x, x); }
    gfield &mul2() { return mul2(*this); }

    gfield &div2()
    {
        if(hasbit(0)) gfint::add(*this, P);
        rshift(1);
        return *this;
    }

    template<int X_DIGITS, int Y_DIGITS> gfield &sub(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
    {
        if(x < y)
        {
            gfint tmp; /* necessary if this==&y, using this instead would clobber y */
            tmp.add(x, P);
            gfint::sub(tmp, y);
        }
        else gfint::sub(x, y);
        return *this;
    }
    template<int Y_DIGITS> gfield &sub(const bigint<Y_DIGITS> &y) { return sub(*this, y); }

    template<int X_DIGITS> gfield &neg(const bigint<X_DIGITS> &x)
    {
        gfint::sub(P, x);
        return *this;
    }
    gfield &neg() { return neg(*this); }

    template<int X_DIGITS> gfield &square(const bigint<X_DIGITS> &x) { return mul(x, x); }
    gfield &square() { return square(*this); }

    template<int X_DIGITS, int Y_DIGITS> gfield &mul(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
    {
        bigint<X_DIGITS+Y_DIGITS> result;
        result.mul(x, y);
        reduce(result);
        return *this;
    }
    template<int Y_DIGITS> gfield &mul(const bigint<Y_DIGITS> &y) { return mul(*this, y); }

    template<int RESULT_DIGITS> void reduce(const bigint<RESULT_DIGITS> &result)
    {
#if GF_BITS==192
        // B = T + S1 + S2 + S3 mod p
        copyshrinkdigits(result, GF_DIGITS); // T

        if(result.morebits(192))
        {
            gfield s;
            s.copybits(0, result, 192, 64);
            s.dupbits(64, 0, 64);
            s.shrinkbits(128);
            add(s); // S1

            if(result.morebits(256))
            {
                s.zerobits(0, 64);
                s.copybits(64, result, 256, 64);
                s.dupbits(128, 64, 64);
                s.shrinkdigits(GF_DIGITS);
                add(s); // S2

                if(result.morebits(320))
                {
                    s.copybits(0, result, 320, 64);
                    s.dupbits(64, 0, 64);
                    s.dupbits(128, 0, 64);
                    s.shrinkdigits(GF_DIGITS);
                    add(s); // S3
                }
            }
        }
        else if(*this >= P) gfint::sub(*this, P);
#elif GF_BITS==256
        // B = T + 2*S1 + 2*S2 + S3 + S4 - D1 - D2 - D3 - D4 mod p
        copyshrinkdigits(result, GF_DIGITS); // T

        if(result.morebits(256))
        {
            gfield s;
            if(result.morebits(352))
            {
                s.zerobits(0, 96);
                s.copybits(96, result, 352, 160);
                s.shrinkdigits(GF_DIGITS);
                add(s); add(s); // S1
            
                if(result.morebits(384))
                {
                    //s.zerobits(0, 96);
                    s.copybits(96, result, 384, 128);
                    s.shrinkbits(224);
                    add(s); add(s); // S2
                }
            }

            s.copybits(0, result, 256, 96);
            s.zerobits(96, 96);
            s.copybits(192, result, 448, 64);
            s.shrinkdigits(GF_DIGITS);
            add(s); // S3
           
            s.copybits(0, result, 288, 96);
            s.copybits(96, result, 416, 96);
            s.dupbits(192, 96, 32);
            s.copybits(224, result, 256, 32); 
            s.shrinkdigits(GF_DIGITS);
            add(s); // S4

            s.copybits(0, result, 352, 96);
            s.zerobits(96, 96);
            s.copybits(192, result, 256, 32);
            s.copybits(224, result, 320, 32);
            s.shrinkdigits(GF_DIGITS);
            sub(s); // D1

            s.copybits(0, result, 384, 128);
            //s.zerobits(128, 64);
            s.copybits(192, result, 288, 32);
            s.copybits(224, result, 352, 32);
            s.shrinkdigits(GF_DIGITS);
            sub(s); // D2

            s.copybits(0, result, 416, 96);
            s.copybits(96, result, 256, 96);
            s.zerobits(192, 32);
            s.copybits(224, result, 384, 32);
            s.shrinkdigits(GF_DIGITS);
            sub(s); // D3

            s.copybits(0, result, 448, 64);
            s.zerobits(64, 32);
            s.copybits(96, result, 288, 96);
            //s.zerobits(192, 32);
            s.copybits(224, result, 416, 32);
            s.shrinkdigits(GF_DIGITS);
            sub(s); // D4
        }
        else if(*this >= P) gfint::sub(*this, P);
#else
#error Unsupported GF
#endif
    }

    template<int X_DIGITS, int Y_DIGITS> gfield &pow(const bigint<X_DIGITS> &x, const bigint<Y_DIGITS> &y)
    {
        gfield a(x);
        if(y.hasbit(0)) *this = a;
        else
        {
            len = 1;
            digits[0] = 1;
            if(!y.len) return *this;
        }
        for(int i = 1, j = y.numbits(); i < j; i++)
        {
            a.square();
            if(y.hasbit(i)) mul(a);
        }
        return *this;
    }
    template<int Y_DIGITS> gfield &pow(const bigint<Y_DIGITS> &y) { return pow(*this, y); }

    bool invert(const gfield &x)
    {
        if(!x.len) return false;
        gfint u(x), v(P), A((gfint::digit)1), C((gfint::digit)0);
        while(!u.iszero())
        {
            int ushift = 0, ashift = 0;
            while(!u.hasbit(ushift))
            {
                ushift++;
                if(A.hasbit(ashift))
                {
                    if(ashift) { A.rshift(ashift); ashift = 0; }
                    A.add(P);
                }
                ashift++;
            }
            if(ushift) u.rshift(ushift);
            if(ashift) A.rshift(ashift);
            int vshift = 0, cshift = 0;
            while(!v.hasbit(vshift))
            {
                vshift++;
                if(C.hasbit(cshift))
                {
                    if(cshift) { C.rshift(cshift); cshift = 0; }
                    C.add(P);
                }
                cshift++;
            }
            if(vshift) v.rshift(vshift);
            if(cshift) C.rshift(cshift);
            if(u >= v)
            {
                u.sub(v);
                if(A < C) A.add(P);
                A.sub(C);
            }
            else
            {
                v.sub(v, u);
                if(C < A) C.add(P);
                C.sub(A);
            }
        }
        if(C >= P) gfint::sub(C, P);
        else { len = C.len; memcpy(digits, C.digits, len*sizeof(digit)); }
        ASSERT(*this < P);
        return true;
    }
    void invert() { invert(*this); }

    template<int X_DIGITS> static int legendre(const bigint<X_DIGITS> &x)
    {
        static const gfint Psub1div2(gfint(P).sub(bigint<1>(1)).rshift(1));
        gfield L;
        L.pow(x, Psub1div2);
        if(!L.len) return 0;
        if(L.len==1) return 1;
        return -1;
    }
    int legendre() const { return legendre(*this); }

    bool sqrt(const gfield &x)
    {
        if(!x.len) { len = 0; return true; }
#if GF_BITS==224
#error Unsupported GF
#else
        ASSERT((P.digits[0]%4)==3);
        static const gfint Padd1div4(gfint(P).add(bigint<1>(1)).rshift(2));
        switch(legendre(x))
        {
            case 0: len = 0; return true;
            case -1: return false;
            default: pow(x, Padd1div4); return true;
        }
#endif
    }
    bool sqrt() { return sqrt(*this); }
};

struct ecjacobian
{
    static const gfield B;
    static const ecjacobian base;
    static const ecjacobian origin;

    gfield x, y, z;

    ecjacobian() {}
    ecjacobian(const gfield &x, const gfield &y) : x(x), y(y), z(bigint<1>(1)) {}
    ecjacobian(const gfield &x, const gfield &y, const gfield &z) : x(x), y(y), z(z) {}

    void mul2()
    {
        if(z.iszero()) return;
        else if(y.iszero()) { *this = origin; return; }
        gfield a, b, c, d;
        d.sub(x, c.square(z));
        d.mul(c.add(x));
        c.mul2(d).add(d);
        z.mul(y).add(z);
        a.square(y);
        b.mul2(a);
        d.mul2(x).mul(b);
        x.square(c).sub(d).sub(d);
        a.square(b).add(a);
        y.sub(d, x).mul(c).sub(a);
    }

    void add(const ecjacobian &q)
    {
        if(q.z.iszero()) return;
        else if(z.iszero()) { *this = q; return; }
        gfield a, b, c, d, e, f;
        a.square(z);
        b.mul(q.y, a).mul(z);
        a.mul(q.x);
        if(q.z.isone())
        {
            c.add(x, a);
            d.add(y, b);
            a.sub(x, a);
            b.sub(y, b);
        }
        else
        {
            f.mul(y, e.square(q.z)).mul(q.z);
            e.mul(x);
            c.add(e, a);
            d.add(f, b);
            a.sub(e, a);
            b.sub(f, b);
        }
        if(a.iszero()) { if(b.iszero()) mul2(); else *this = origin; return; }
        if(!q.z.isone()) z.mul(q.z);
        z.mul(a);
        x.square(b).sub(f.mul(c, e.square(a)));
        y.sub(f, x).sub(x).mul(b).sub(e.mul(a).mul(d)).div2();
    }

    template<int Q_DIGITS> void mul(const ecjacobian &p, const bigint<Q_DIGITS> &q)
    {
        *this = origin;
        loopirev(q.numbits())
        {
            mul2();
            if(q.hasbit(i)) add(p);
        }
    }
    template<int Q_DIGITS> void mul(const bigint<Q_DIGITS> &q) { ecjacobian tmp(*this); mul(tmp, q); }

    void normalize()
    {
        if(z.iszero() || z.isone()) return;
        gfield tmp;
        z.invert();
        tmp.square(z);
        x.mul(tmp);
        y.mul(tmp).mul(z);
        z = bigint<1>(1);
    }

    bool calcy(bool ybit)
    {
        gfield y2, tmp;
        y2.square(x).mul(x).sub(tmp.add(x, x).add(x)).add(B);
        if(!y.sqrt(y2)) { y.zero(); return false; }
        if(y.hasbit(0) != ybit) y.neg();
        return true;
    }

    void print(vector<char> &buf)
    {
        normalize();
        buf.add(y.hasbit(0) ? '-' : '+');
        x.printdigits(buf);
    }

    void parse(const char *s)
    {
        bool ybit = *s++ == '-';
        x.parse(s);
        calcy(ybit);
        z = bigint<1>(1);
    }
};

const ecjacobian ecjacobian::origin(gfield((gfield::digit)1), gfield((gfield::digit)1), gfield((gfield::digit)0));

#if GF_BITS==192
const gfield gfield::P("fffffffffffffffffffffffffffffffeffffffffffffffff");
const gfield ecjacobian::B("64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1");
const ecjacobian ecjacobian::base(
    gfield("188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012"),
    gfield("07192b95ffc8da78631011ed6b24cdd573f977a11e794811")
);
#elif GF_BITS==224
const gfield gfield::P("ffffffffffffffffffffffffffffffff000000000000000000000001");
const gfield ecjacobian::B("b4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4");
const ecjacobian ecjacobian::base(
    gfield("b70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21"),
    gfield("bd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34")
);
#elif GF_BITS==256
const gfield gfield::P("ffffffff00000001000000000000000000000000ffffffffffffffffffffffff");
const gfield ecjacobian::B("5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b");
const ecjacobian ecjacobian::base(
    gfield("6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296"),
    gfield("4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5")
);
#elif GF_BITS==384
const gfield gfield::P("fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffeffffffff0000000000000000ffffffff");
const gfield ecjacobian::B("b3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef");
const ecjacobian ecjacobian::base(
    gfield("aa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7"),
    gfield("3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f")
);
#elif GF_BITS==521
const gfield gfield::P("1ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff");
const gfield ecjacobian::B("051953eb968e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00");
const ecjacobian ecjacobian::base(
    gfield("c6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66"),
    gfield("11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650")
);
#else
#error Unsupported GF
#endif

void calcpubkey(gfint privkey, vector<char> &pubstr)
{
    ecjacobian c(ecjacobian::base);
    c.mul(privkey);
    c.normalize();
    c.print(pubstr);
    pubstr.add('\0');
}

bool calcpubkey(const char *privstr, vector<char> &pubstr)
{
    if(!privstr[0]) return false;
    gfint privkey;
    privkey.parse(privstr);
    calcpubkey(privkey, pubstr);
    return true;
}

void genprivkey(const char *seed, vector<char> &privstr, vector<char> &pubstr)
{
    tiger::hashval hash;
    tiger::hash((const uchar *)seed, (int)strlen(seed), hash);
    bigint<8*sizeof(hash.bytes)/BI_DIGIT_BITS> privkey;
    memcpy(privkey.digits, hash.bytes, sizeof(hash.bytes));
    privkey.len = 8*sizeof(hash.bytes)/BI_DIGIT_BITS;
    privkey.shrink();
    privkey.printdigits(privstr);
    privstr.add('\0');

    calcpubkey(privkey, pubstr);
}

bool hashstring(const char *str, char *result, int maxlen)
{
    tiger::hashval hv;
    if(maxlen < 2*(int)sizeof(hv.bytes) + 1) return false;
    tiger::hash((uchar *)str, strlen(str), hv);
    loopi(sizeof(hv.bytes))
    {
        uchar c = hv.bytes[i];
        *result++ = "0123456789abcdef"[c&0xF];
        *result++ = "0123456789abcdef"[c>>4];
    }
    *result = '\0';
    return true;
}

void answerchallenge(const char *privstr, const char *challenge, vector<char> &answerstr)
{
    gfint privkey;
    privkey.parse(privstr);
    ecjacobian answer;
    answer.parse(challenge);
    answer.mul(privkey);
    answer.normalize();
    answer.x.printdigits(answerstr);
    answerstr.add('\0');
}

void *parsepubkey(const char *pubstr)
{
    ecjacobian *pubkey = new ecjacobian;
    pubkey->parse(pubstr);
    return pubkey;
}

void freepubkey(void *pubkey)
{
    delete (ecjacobian *)pubkey;
}

void *genchallenge(void *pubkey, const void *seed, int seedlen, vector<char> &challengestr)
{
    tiger::hashval hash;
    tiger::hash((const uchar *)seed, seedlen, hash);
    gfint challenge;
    memcpy(challenge.digits, hash.bytes, sizeof(hash.bytes));
    challenge.len = 8*sizeof(hash.bytes)/BI_DIGIT_BITS;
    challenge.shrink();

    ecjacobian answer(*(ecjacobian *)pubkey);
    answer.mul(challenge);
    answer.normalize();

    ecjacobian secret(ecjacobian::base);
    secret.mul(challenge);
    secret.normalize();

    secret.print(challengestr);
    challengestr.add('\0');
   
    return new gfield(answer.x);
}

void freechallenge(void *answer)
{
    delete (gfint *)answer;
}

bool checkchallenge(const char *answerstr, void *correct)
{
    gfint answer(answerstr);
    return answer == *(gfint *)correct;
}