File: stream.cpp

package info (click to toggle)
cubemap 1.5.2-3
  • links: PTS
  • area: main
  • in suites: forky, sid, trixie
  • size: 908 kB
  • sloc: ansic: 8,411; cpp: 5,730; sh: 114; perl: 112; makefile: 76
file content (572 lines) | stat: -rw-r--r-- 18,447 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
#include <assert.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <limits.h>
#include <math.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <algorithm>
#include <string>
#include <queue>
#include <vector>

#include "log.h"
#include "metacube2.h"
#include "state.pb.h"
#include "stream.h"
#include "util.h"

using namespace std;

Stream::Stream(const string &url,
               size_t backlog_size,
               uint64_t prebuffering_bytes,
               Encoding encoding,
               Encoding src_encoding,
               unsigned hls_frag_duration,
               size_t hls_backlog_margin,
               const std::string &allow_origin)
	: url(url),
	  encoding(encoding),
	  src_encoding(src_encoding),
	  allow_origin(allow_origin),
	  data_fd(make_tempfile("")),
	  backlog_size(backlog_size),
	  prebuffering_bytes(prebuffering_bytes),
	  hls_frag_duration(hls_frag_duration),
	  hls_backlog_margin(hls_backlog_margin)
{
	if (data_fd == -1) {
		exit(1);
	}
}

Stream::~Stream()
{
	if (data_fd != -1) {
		safe_close(data_fd);
	}
}

Stream::Stream(const StreamProto &serialized, int data_fd)
	: url(serialized.url()),
	  unavailable(serialized.unavailable()),
	  http_header(serialized.http_header()),
	  stream_header(serialized.stream_header()),
	  encoding(Stream::STREAM_ENCODING_RAW),  // Will be changed later.
	  data_fd(data_fd),
	  backlog_size(serialized.backlog_size()),
	  bytes_received(serialized.bytes_received()),
	  first_fragment_index(serialized.first_fragment_index()),
	  discontinuity_counter(serialized.discontinuity_counter())
{
	if (data_fd == -1) {
		exit(1);
	}

	// Set the close-on-exec parameter back on the backlog fd.
	fcntl(data_fd, F_SETFD, FD_CLOEXEC);

	for (ssize_t point : serialized.suitable_starting_point()) {
		if (point == -1) {
			// Can happen when upgrading from before 1.1.3,
			// where this was an optional field with -1 signifying
			// "no such point".
			continue;
		}
		suitable_starting_points.push_back(point);
	}

	for (const FragmentStartProto &fragment : serialized.fragment()) {
		fragments.push_back(FragmentStart { size_t(fragment.byte_position()), fragment.pts(), fragment.begins_header() });
	}
}

StreamProto Stream::serialize()
{
	StreamProto serialized;
	serialized.set_unavailable(unavailable);
	serialized.set_http_header(http_header);
	serialized.set_stream_header(stream_header);
	serialized.add_data_fds(data_fd);
	serialized.set_backlog_size(backlog_size);
	serialized.set_bytes_received(bytes_received);
	for (size_t point : suitable_starting_points) {
		serialized.add_suitable_starting_point(point);
	}
	for (const FragmentStart &fragment : fragments) {
		FragmentStartProto *proto = serialized.add_fragment();
		proto->set_byte_position(fragment.byte_position);
		proto->set_pts(fragment.pts);
		proto->set_begins_header(fragment.begins_header);
	}
	serialized.set_first_fragment_index(first_fragment_index);
	serialized.set_discontinuity_counter(discontinuity_counter);

	// Unset the close-on-exec flag for the backlog fd.
	// (This can't leak into a child, since there's only one thread left.)
	fcntl(data_fd, F_SETFD, 0);

	serialized.set_url(url);
	data_fd = -1;
	return serialized;
}
	
void Stream::set_backlog_size(size_t new_size)
{
	if (backlog_size == new_size) {
		return;
	}

	string existing_data;
	if (!read_tempfile_and_close(data_fd, &existing_data)) {
		exit(1);
	}

	// Unwrap the data so it's no longer circular.
	if (bytes_received <= backlog_size) {
		existing_data.resize(bytes_received);
	} else {
		size_t pos = bytes_received % backlog_size;
		existing_data = existing_data.substr(pos, string::npos) +
			existing_data.substr(0, pos);
	}

	// See if we need to discard data.
	if (new_size < existing_data.size()) {
		size_t to_discard = existing_data.size() - new_size;
		existing_data = existing_data.substr(to_discard, string::npos);
	}

	// Create a new, empty data file.
	data_fd = make_tempfile("");
	if (data_fd == -1) {
		exit(1);
	}
	backlog_size = new_size;

	// Now cheat a bit by rewinding, and adding all the old data back.
	bytes_received -= existing_data.size();
	DataElement data_element;
	data_element.data.iov_base = const_cast<char *>(existing_data.data());
	data_element.data.iov_len = existing_data.size();
	data_element.metacube_flags = 0;  // Ignored by add_data_raw().

	vector<DataElement> data_elements;
	data_elements.push_back(data_element);
	add_data_raw(data_elements);
	remove_obsolete_starting_points();
}

void Stream::set_header(const std::string &new_http_header, const std::string &new_stream_header)
{
	unavailable = false;
	http_header = new_http_header;
	if (new_stream_header == stream_header) {
		return;
	}

	// We cannot start at any of the older starting points anymore,
	// since they'd get the wrong header for the stream (not to mention
	// that a changed header probably means the stream restarted,
	// which means any client starting on the old one would probably
	// stop playing properly at the change point). Next block
	// should be a suitable starting point (if not, something is
	// pretty strange), so it will fill up again soon enough.
	suitable_starting_points.clear();

	// HLS, on the other hand, can deal with discontinuities and multiple
	// headers. At least in theory (client support varies wildly).
	if (!fragments.empty()) {
		// Commit the old header to the backlog, so that we can serve it
		// for all the old fragments for as long as they exist.
		if (!stream_header.empty()) {
			// End the current fragment and make a new one for the header.
			fragments.push_back(Stream::FragmentStart { bytes_received, 0.0, true });
			process_queued_data();
			Stream::DataElement elem;
			elem.data.iov_base = (char *)stream_header.data();
			elem.data.iov_len = stream_header.size();
			add_data_raw({ elem });
			remove_obsolete_starting_points();

			// The discontinuity counter will be increased when
			// this header goes out of the backlog.
		}
		clear_hls_playlist_cache();
	}
	stream_header = new_stream_header;
}

void Stream::put_client_to_sleep(Client *client)
{
	sleeping_clients.push_back(client);
}

// Return a new set of iovecs that contains only the first <bytes_wanted> bytes of <data>.
vector<iovec> collect_iovecs(const vector<Stream::DataElement> &data, size_t bytes_wanted)
{
	vector<iovec> ret;
	size_t max_iovecs = min<size_t>(data.size(), IOV_MAX);
	for (size_t i = 0; i < max_iovecs && bytes_wanted > 0; ++i) {
		if (data[i].data.iov_len <= bytes_wanted) {
			// Consume the entire iovec.
			ret.push_back(data[i].data);
			bytes_wanted -= data[i].data.iov_len;
		} else {
			// Take only parts of this iovec.
			iovec iov;
			iov.iov_base = data[i].data.iov_base;
			iov.iov_len = bytes_wanted;
			ret.push_back(iov);
			bytes_wanted = 0;
		}
	}
	return ret;
}

// Return a new set of iovecs that contains all of <data> except the first <bytes_wanted> bytes.
vector<Stream::DataElement> remove_iovecs(const vector<Stream::DataElement> &data, size_t bytes_wanted)
{
	vector<Stream::DataElement> ret;
	size_t i;
	for (i = 0; i < data.size() && bytes_wanted > 0; ++i) {
		if (data[i].data.iov_len <= bytes_wanted) {
			// Consume the entire iovec.
			bytes_wanted -= data[i].data.iov_len;
		} else {
			// Take only parts of this iovec.
			Stream::DataElement data_element;
			data_element.data.iov_base = reinterpret_cast<char *>(data[i].data.iov_base) + bytes_wanted;
			data_element.data.iov_len = data[i].data.iov_len - bytes_wanted;
			data_element.metacube_flags = METACUBE_FLAGS_NOT_SUITABLE_FOR_STREAM_START;
			data_element.pts = RationalPTS();
			ret.push_back(data_element);
			bytes_wanted = 0;
		}
	}

	// Add the rest of the iovecs unchanged.
	ret.insert(ret.end(), data.begin() + i, data.end());
	return ret;
}

void Stream::add_data_raw(const vector<DataElement> &orig_data)
{
	vector<DataElement> data = orig_data;
	while (!data.empty()) {
		size_t pos = bytes_received % backlog_size;

		// Collect as many iovecs as we can before we hit the point
		// where the circular buffer wraps around.
		vector<iovec> to_write = collect_iovecs(data, backlog_size - pos);
		ssize_t ret;
		do {
			ret = pwritev(data_fd, to_write.data(), to_write.size(), pos);
		} while (ret == -1 && errno == EINTR);

		if (ret == -1) {
			log_perror("pwritev");
			// Dazed and confused, but trying to continue...
			return;
		}
		bytes_received += ret;

		// Remove the data that was actually written from the set of iovecs.
		data = remove_iovecs(data, ret);
	}
}

void Stream::remove_obsolete_starting_points()
{
	// We could do a binary search here (std::lower_bound), but it seems
	// overkill for removing what's probably only a few points.
	while (!suitable_starting_points.empty() &&
	       bytes_received - suitable_starting_points[0] > backlog_size) {
		suitable_starting_points.pop_front();
	}
	assert(backlog_size >= hls_backlog_margin);
	while (!fragments.empty() &&
	       bytes_received - fragments[0].byte_position > (backlog_size - hls_backlog_margin)) {
		if (fragments[0].begins_header) {
			++discontinuity_counter;
		} else {
			++first_fragment_index;
		}
		fragments.pop_front();
		clear_hls_playlist_cache();
	}
}

void Stream::add_data_deferred(const char *data, size_t bytes, uint16_t metacube_flags, const RationalPTS &pts)
{
	// For regular output, we don't want to send the client twice
	// (it's already sent out together with the HTTP header).
	// However, for Metacube output, we need to send it so that
	// the Cubemap instance in the other end has a chance to update it.
	// It may come twice in its stream, but Cubemap doesn't care.
	if (encoding == Stream::STREAM_ENCODING_RAW &&
	    (metacube_flags & METACUBE_FLAGS_HEADER) != 0) {
		return;
	}

	lock_guard<mutex> lock(queued_data_mutex);

	DataElement data_element;
	data_element.metacube_flags = metacube_flags;
	data_element.pts = pts;

	if (encoding == Stream::STREAM_ENCODING_METACUBE) {
		// Construct a PTS metadata block. (We'll avoid sending it out
		// if we don't have a valid PTS.)
		metacube2_pts_packet pts_packet;
		pts_packet.type = htobe64(METACUBE_METADATA_TYPE_NEXT_BLOCK_PTS);
		pts_packet.pts = htobe64(pts.pts);
		pts_packet.timebase_num = htobe64(pts.timebase_num);
		pts_packet.timebase_den = htobe64(pts.timebase_den);

		metacube2_block_header pts_hdr;
		memcpy(pts_hdr.sync, METACUBE2_SYNC, sizeof(pts_hdr.sync));
		pts_hdr.size = htonl(sizeof(pts_packet));
		pts_hdr.flags = htons(METACUBE_FLAGS_METADATA);
		pts_hdr.csum = htons(metacube2_compute_crc(&pts_hdr));

		// Add a Metacube block header before the data.
		metacube2_block_header hdr;
		memcpy(hdr.sync, METACUBE2_SYNC, sizeof(hdr.sync));
		hdr.size = htonl(bytes);
		hdr.flags = htons(metacube_flags);
		hdr.csum = htons(metacube2_compute_crc(&hdr));

		data_element.data.iov_len = bytes + sizeof(hdr);
		if (pts.timebase_num != 0) {
			data_element.data.iov_len += sizeof(pts_hdr) + sizeof(pts_packet);
		}
		data_element.data.iov_base = new char[data_element.data.iov_len];

		char *ptr = reinterpret_cast<char *>(data_element.data.iov_base);
		if (pts.timebase_num != 0) {
			memcpy(ptr, &pts_hdr, sizeof(pts_hdr));
			ptr += sizeof(pts_hdr);
			memcpy(ptr, &pts_packet, sizeof(pts_packet));
			ptr += sizeof(pts_packet);
		}

		memcpy(ptr, &hdr, sizeof(hdr));
		ptr += sizeof(hdr);
		memcpy(ptr, data, bytes);

		queued_data.push_back(data_element);
	} else if (encoding == Stream::STREAM_ENCODING_RAW) {
		// Just add the data itself.
		data_element.data.iov_base = new char[bytes];
		memcpy(data_element.data.iov_base, data, bytes);
		data_element.data.iov_len = bytes;

		queued_data.push_back(data_element);
	} else {
		assert(false);
	}
}

void Stream::process_queued_data()
{
	vector<DataElement> queued_data_copy;

	// Hold the lock for as short as possible, since add_data_raw() can possibly
	// write to disk, which might disturb the input thread.
	{
		lock_guard<mutex> lock(queued_data_mutex);
		if (queued_data.empty()) {
			return;
		}

		swap(queued_data, queued_data_copy);
	}

	// Add suitable starting points for the stream, if the queued data
	// contains such starting points. Note that we drop starting points
	// if they're less than 10 kB apart, so that we don't get a huge
	// amount of them for e.g. each and every MPEG-TS 188-byte cell.
	// The 10 kB value is somewhat arbitrary, but at least it should make
	// the RAM cost of saving the position ~0.1% (or less) of the actual
	// data, and 10 kB is a very fine granularity in most streams.
	static const int minimum_start_point_distance = 10240;
	size_t byte_position = bytes_received;
	bool need_hls_clear = false;
	for (const DataElement &elem : queued_data_copy) {
		if ((elem.metacube_flags & METACUBE_FLAGS_NOT_SUITABLE_FOR_STREAM_START) == 0) {
			size_t num_points = suitable_starting_points.size();
			if (num_points >= 2 &&
			    suitable_starting_points[num_points - 1] - suitable_starting_points[num_points - 2] < minimum_start_point_distance) {
				// p[n-1] - p[n-2] < 10 kB, so drop p[n-1].
				suitable_starting_points.pop_back();
			}
			suitable_starting_points.push_back(byte_position);

			if (elem.pts.timebase_num != 0) {
				need_hls_clear |= add_fragment_boundary(byte_position, elem.pts);
			}
		}
		byte_position += elem.data.iov_len;
	}
	if (need_hls_clear) {
		clear_hls_playlist_cache();
	}

	add_data_raw(queued_data_copy);
	remove_obsolete_starting_points();
	for (const DataElement &elem : queued_data_copy) {
		char *data = reinterpret_cast<char *>(elem.data.iov_base);
		delete[] data;
	}

	// We have more data, so wake up all clients.
	if (to_process.empty()) {
		swap(sleeping_clients, to_process);
	} else {
		to_process.insert(to_process.end(), sleeping_clients.begin(), sleeping_clients.end());
		sleeping_clients.clear();
	}
}

bool Stream::add_fragment_boundary(size_t byte_position, const RationalPTS &pts)
{
	double pts_double = double(pts.pts) * pts.timebase_den / pts.timebase_num;

	if (fragments.size() <= 1 ||
	    fragments[fragments.size() - 1].begins_header ||
	    fragments[fragments.size() - 2].begins_header) {
		// Just starting up, so try to establish the first in-progress fragment.
		fragments.push_back(FragmentStart{ byte_position, pts_double, false });
		return false;
	}

	// Keep extending the in-progress fragment as long as we do not
	// exceed the target duration by more than half a second
	// (RFC 8216 4.3.3.1) and we get closer to the target by doing so.
	// Note that in particular, this means we'll always extend
	// as long as we don't exceed the target duration.
	double current_duration = pts_double - fragments[fragments.size() - 1].pts;
	double candidate_duration = pts_double - fragments[fragments.size() - 2].pts;
	if (lrintf(candidate_duration) <= hls_frag_duration &&
	    fabs(candidate_duration - hls_frag_duration) < fabs(current_duration - hls_frag_duration)) {
		fragments.back() = FragmentStart{ byte_position, pts_double, false };
		return false;
	} else {
		// Extending the in-progress fragment would make it too long,
		// so finalize it and start a new in-progress fragment.
		fragments.push_back(FragmentStart{ byte_position, pts_double, false });
		return true;
	}
}

void Stream::clear_hls_playlist_cache()
{
	hls_playlist_http10.reset();
	hls_playlist_http11_close.reset();
	hls_playlist_http11_persistent.reset();
}

shared_ptr<const string> Stream::generate_hls_playlist(bool http_11, bool close_after_response)
{
	char buf[256];
	snprintf(buf, sizeof(buf),
		"#EXTM3U\r\n"
		"#EXT-X-VERSION:7\r\n"
		"#EXT-X-TARGETDURATION:%u\r\n"
		"#EXT-X-MEDIA-SEQUENCE:%" PRIu64 "\r\n"
		"#EXT-X-DISCONTINUITY-SEQUENCE:%" PRIu64 "\r\n",
		hls_frag_duration,
		first_fragment_index,
		discontinuity_counter);

	string playlist = buf;

	if (fragments.size() >= 3) {
		bool printed_header_for_this_group = false;
		bool printed_first_header = false;
		for (size_t i = 0; i < fragments.size() - 2; ++i) {
			char buf[256];

			if (fragments[i].begins_header) {
				// End of this group. (We've already printed the header
				// as part of the previous group.)
				printed_header_for_this_group = false;
				continue;
			}
			if (!printed_header_for_this_group) {
				// Look forward until we find the header for this group (if any).
				for (size_t j = i + 1; j < fragments.size() - 1; ++j) {
					if (fragments[j].begins_header) {
						if (printed_first_header) {
							playlist += "#EXT-X-DISCONTINUITY\r\n";
						}
						snprintf(buf, sizeof(buf),
							"#EXT-X-MAP:URI=\"%s?frag=%" PRIu64 "-%" PRIu64 "\"\r\n",
							url.c_str(), fragments[j].byte_position,
							fragments[j + 1].byte_position);
						playlist += buf;
						printed_first_header = true;
						printed_header_for_this_group = true;
						break;
					}
				}

				if (!printed_header_for_this_group && !stream_header.empty()) {
					if (printed_first_header) {
						playlist += "#EXT-X-DISCONTINUITY\r\n";
					}
					snprintf(buf, sizeof(buf), "#EXT-X-MAP:URI=\"%s?frag=header\"\r\n", url.c_str());
					playlist += buf;
				}

				// Even if we didn't find anything, we don't want to search again for each fragment.
				printed_first_header = true;
				printed_header_for_this_group = true;
			}

			if (fragments[i + 1].begins_header) {
				// Since we only have start pts for each block and not duration,
				// we have no idea how long this fragment is; the encoder restarted
				// before it got to output the next pts. However, it's likely
				// to be very short, so instead of trying to guess, we just skip it.
				continue;
			}

			snprintf(buf, sizeof(buf), "#EXTINF:%f,\r\n%s?frag=%" PRIu64 "-%" PRIu64 "\r\n",
				fragments[i + 1].pts - fragments[i].pts,
				url.c_str(),
				fragments[i].byte_position,
				fragments[i + 1].byte_position);
			playlist += buf;
		}
	}

	string response;
	if (http_11) {
		response = "HTTP/1.1 200 OK\r\n";
		if (close_after_response) {
			response.append("Connection: close\r\n");
		}
	} else {
		assert(close_after_response);
		response = "HTTP/1.0 200 OK\r\n";
	}
	snprintf(buf, sizeof(buf), "Content-Length: %zu\r\n", playlist.size());
	response.append(buf);
	response.append("Content-Type: application/x-mpegURL\r\n");
	if (!allow_origin.empty()) {
		response.append("Access-Control-Allow-Origin: ");
		response.append(allow_origin);
		response.append("\r\n");
	}
	response.append("\r\n");
	response.append(move(playlist));

	return shared_ptr<const string>(new string(move(response)));
}