File: gff_utils.h

package info (click to toggle)
cufflinks 1.3.0-2
  • links: PTS, VCS
  • area: non-free
  • in suites: wheezy
  • size: 3,864 kB
  • sloc: cpp: 48,999; ansic: 12,297; sh: 3,381; python: 432; makefile: 209
file content (623 lines) | stat: -rw-r--r-- 21,205 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
#ifndef GFF_UTILS_H
#define GFF_UTILS_H
#include "gff.h"
#include "GStr.h"
#include "GFastaIndex.h"
#include "GFaSeqGet.h"

typedef bool GFValidateFunc(GffObj* gf, GList<GffObj>* gfadd);

class GeneInfo { //for Ensembl GTF conversion
 public:
   int flag;
   GffObj* gf;
   GList<GStr> gene_names;
   GList<GStr> transcripts; //list of transcript IDs
   GeneInfo():gene_names(true, true, true), transcripts(true,true,true) {
     gf=NULL;
     flag=0;
     }
   GeneInfo(GffObj* gfrec, bool ensembl_convert=false):gene_names(true, true, true), 
                    transcripts(true,true,true) {
     flag=0;
     if (gfrec->getGeneName())
        gene_names.Add(new GStr(gfrec->getGeneName()));
     transcripts.Add(new GStr(gfrec->getID()));
     create_gf(gfrec, ensembl_convert);
     }
     
   void create_gf(GffObj* gfrec, bool ensembl_convert) {
     gf=new GffObj(gfrec->getGeneID());
     gf->gseq_id=gfrec->gseq_id;
     gf->track_id=gfrec->track_id;
     gf->start=gfrec->start;
     gf->end=gfrec->end;
     gf->strand=gfrec->strand;
     gf->setFeatureName("gene");
     gf->isGene(true);
     gf->isUsed(true);
     gf->uptr=this;
     gfrec->incLevel();
     gfrec->parent=gf;
     gf->children.Add(gfrec);
     if (ensembl_convert) {
       //gf->addAttr("type", gf->getTrackName());
       const char* biotype=gfrec->getAttr("type");
       if (biotype) gf->addAttr("type", biotype);
       }
     //gf->children.Add(gfrec);
     }
   //~GeneInfo() {
   //  }
   void update(GffObj* gfrec) {
     if (transcripts.AddedIfNew(new GStr(gfrec->getID()))<0)
       return;
     gene_names.AddedIfNew(new GStr(gfrec->getGeneName()));
     if (gf==NULL) {
        GError("GeneInfo::update() called on uninitialized gf!\n");
        //create_gf(gfrec);
        //return;
        }
     gfrec->parent=gf;
     gf->children.Add(gfrec);
     gfrec->incLevel();
     if (gf->start>gfrec->start) 
           gf->start=gfrec->start;
     if (gf->end<gfrec->end) 
           gf->end=gfrec->end;
     }
    void finalize() {
     //prepare attributes for printing
     //must be called right before printing
     if (gf==NULL || transcripts.Count()==0) return;
     if (gene_names.Count()>0) {
       gf->addAttr("Name", gene_names[0]->chars());
       /*
       GStr s(gene_names[0]->chars());
       for (int i=1;i<gene_names.Count();i++) {
          s.append(",");
          s.append(gene_names[i]->chars());
          }
       gf->addAttr("genes", s.chars());
       */
       } //has gene names
       GStr t(transcripts[0]->chars());
       for (int i=1;i<transcripts.Count();i++) {
          t.append(",");
          t.append(transcripts[i]->chars());
          }
       gf->addAttr("transcripts", t.chars());
     }
};

//genomic fasta sequence handling
class GFastaDb {
 public:
  char* fastaPath;
  GFastaIndex* faIdx; //could be a cdb .cidx file
  int last_fetchid;
  GFaSeqGet* faseq;
  //GCdbYank* gcdb;
  char* getFastaFile(int gseq_id) {
     if (fastaPath==NULL) return NULL;
     GStr s(fastaPath);
     s.trimR('/');
     s.appendfmt("/%s",GffObj::names->gseqs.getName(gseq_id));
     GStr sbase(s);
     if (!fileExists(s.chars())) s.append(".fa");
     if (!fileExists(s.chars())) s.append("sta");
     if (fileExists(s.chars())) return Gstrdup(s.chars());
         else {
             GMessage("Warning: cannot find genomic sequence file %s{.fa,.fasta}\n",sbase.chars());
             return NULL;
             }
     }

   GFastaDb(const char* fpath=NULL) {
     //gcdb=NULL;
     fastaPath=NULL;
     faseq=NULL;
     faIdx=NULL;
     init(fpath);
     }

   void init(const char* fpath) {
     if (fpath==NULL || fpath[0]==0) return;
     last_fetchid=-1;
     if (!fileExists(fpath))
       GError("Error: file/directory %s does not exist!\n",fpath);
     fastaPath=Gstrdup(fpath);
     GStr gseqpath(fpath);
     if (fileExists(fastaPath)>1) { //exists and it's not a directory
            GStr fainame(fastaPath);
            if (fainame.rindex(".fai")==fainame.length()-4) {
               //.fai index file given directly
               fastaPath[fainame.length()-4]=0;
               if (!fileExists(fastaPath))
                  GError("Error: cannot find fasta file for index %s !\n", fastaPath);
               }
              else fainame.append(".fai");
            //GMessage("creating GFastaIndex with fastaPath=%s, fainame=%s\n", fastaPath, fainame.chars());
            faIdx=new GFastaIndex(fastaPath,fainame.chars());
            GStr fainamecwd(fainame);
            int ip=-1;
            if ((ip=fainamecwd.rindex(CHPATHSEP))>=0)
               fainamecwd.cut(0,ip+1);
            if (!faIdx->hasIndex()) { //could not load index
               //try current directory
                  if (fainame!=fainamecwd) {
                    if (fileExists(fainamecwd.chars())>1) {
                       faIdx->loadIndex(fainamecwd.chars());
                       }
                    }
                  } //tried to load index
            if (!faIdx->hasIndex()) {
                 GMessage("No fasta index found for %s. Rebuilding, please wait..\n",fastaPath);
                 faIdx->buildIndex();
                 if (faIdx->getCount()==0) GError("Error: no fasta records found!\n");
                 GMessage("Fasta index rebuilt.\n");
                 FILE* fcreate=fopen(fainame.chars(), "w");
                 if (fcreate==NULL) {
                   GMessage("Warning: cannot create fasta index %s! (permissions?)\n", fainame.chars());
                   if (fainame!=fainamecwd) fcreate=fopen(fainamecwd.chars(), "w");
                   if (fcreate==NULL)
                      GError("Error: cannot create fasta index %s!\n", fainamecwd.chars());
                   }
                 if (faIdx->storeIndex(fcreate)<faIdx->getCount())
                     GMessage("Warning: error writing the index file!\n");
                 } //index created and attempted to store it
            } //multi-fasta
     }
   GFaSeqGet* fetch(int gseq_id, bool checkFasta=false) {
     if (fastaPath==NULL) return NULL;
     if (gseq_id==last_fetchid && faseq!=NULL) return faseq;
     delete faseq;
     faseq=NULL;
     last_fetchid=-1;
     char* gseqname=GffObj::names->gseqs.getName(gseq_id);
     if (faIdx!=NULL) { //fastaPath was the multi-fasta file name
        GFastaRec* farec=faIdx->getRecord(gseqname);
        if (farec!=NULL) {
             faseq=new GFaSeqGet(fastaPath,farec->seqlen, farec->fpos,
                               farec->line_len, farec->line_blen);
             faseq->loadall(); //just cache the whole sequence, it's faster
             last_fetchid=gseq_id;
             }
        else {
          GMessage("Warning: couldn't find fasta record for '%s'!\n",gseqname);
          return NULL;
          }
        }
     else {
         char* sfile=getFastaFile(gseq_id);
         if (sfile!=NULL) {
            faseq=new GFaSeqGet(sfile,checkFasta);
            faseq->loadall();
            last_fetchid=gseq_id;
            GFREE(sfile);
            }
         } //one fasta file per contig
       return faseq;
     }

   ~GFastaDb() {
     GFREE(fastaPath);
     //delete gcdb;
     delete faIdx;
     delete faseq;
     }
};

class GffLocus;

class GTData { //transcript associated data
 public:
    GffObj* rna;
    GffLocus* locus;
    GffObj* replaced_by;
    GeneInfo* geneinfo;
    int flag;
    GTData(GffObj* t=NULL) {
        rna=t;
        flag=0;
        locus=NULL;
        replaced_by=NULL;
        geneinfo=NULL;
        if (rna!=NULL) {
            geneinfo=(GeneInfo*)rna->uptr; //take over geneinfo, if there
            rna->uptr=this;
            }
        }
   bool operator>(GTData& b) { return (rna > b.rna); }
   bool operator<(GTData& b) { return (rna < b.rna); }
   bool operator==(GTData& b) { return (rna==b.rna); }
};

class CGeneSym {
 public:
  GStr name;
  int freq;
  CGeneSym(const char* n=NULL, int f=0):name(n) {
    freq=f;
    }
  bool operator>(CGeneSym& b) {
     return (freq==b.freq) ? ( (name.length()==b.name.length()) ? (name>b.name) :
               (name.length()>b.name.length()) ) : ( freq<b.freq );
     }
  bool operator<(CGeneSym& b) {
     return (freq==b.freq)? ( (name.length()==b.name.length()) ? (name<b.name) :
         (name.length()<b.name.length()) ) : ( freq>b.freq );
     }
  bool operator==(CGeneSym& b) { return name==b.name; }
};

const char* getGeneDescr(const char* gsym);

void printLocus(GffLocus* loc, const char* pre=NULL);

class GffLocus:public GSeg {
public:
    int gseq_id; //id of underlying genomic sequence
    int locus_num;
    bool is_mrna;
    char strand;
    GffObj* t_maxcov;  //transcript with maximum coverage (for main "ref" transcript)
    GList<GffObj> rnas; //list of transcripts (isoforms) for this locus
    GArray<GSeg> mexons; //list of merged exons in this region
    GList<CGeneSym> gene_names;
    GList<CGeneSym> gene_ids;
    int v; //user flag/data
   /*
   bool operator==(GffLocus& d){
       return (gseq_id==d.gseq_id && strand==d.strand && start==d.start && end==d.end);
       }
   bool operator>(GffLocus& d){
      if (gseq_id!=d.gseq_id) return (gseq_id>d.gseq_id);
      if (start==d.start) {
         if (end==d.end) return (strand>d.strand);
                      else return (end>d.end);
         } else return (start>d.start);
      }
   bool operator<(GffLocus& d){
     if (gseq_id!=d.gseq_id) return (gseq_id<d.gseq_id);
     if (start==d.start) {
        if (end==d.end) return strand<d.strand;
                     else return end<d.end;
        } else return (start<d.start);
     }
    */
    const char* getGeneName() {
         if (gene_names.Count()==0) return NULL;
         return gene_names.First()->name.chars();
         }
    const char* get_tmax_id() {
         return t_maxcov->getID();
         }
    const char* get_descr() {
       if (gene_names.Count()>0) {
          for (int i=0;i<gene_names.Count();i++) {
            const char* gn=getGeneDescr(gene_names.First()->name.chars());
            if (gn!=NULL) return gn;
            }
          }
       char* s=t_maxcov->getAttr("product");
       if (s!=NULL) return s;
       s=t_maxcov->getAttr("descr");
       if (s!=NULL) return s;
       s=t_maxcov->getAttr("description");
       if (s!=NULL) return s;
       s=t_maxcov->getAttr("info");
       if (s!=NULL) return s;
       return NULL;
       }

    GffLocus(GffObj* t=NULL):rnas(true,false,false),mexons(true,true),
           gene_names(true,true,false), gene_ids(true,true,false) {
        //this will NOT free rnas!
        t_maxcov=NULL;
        gseq_id=-1;
        v=0;
        locus_num=0;
        start=0;
        end=0;
        strand=0;
        is_mrna=false;
        if (t!=NULL) {
           start=t->exons.First()->start;
           end=t->exons.Last()->end;;
           gseq_id=t->gseq_id;
           GSeg seg;
           for (int i=0;i<t->exons.Count();i++) {
                seg.start=t->exons[i]->start;
                seg.end=t->exons[i]->end;
                mexons.Add(seg);
                }
           rnas.Add(t);
           ((GTData*)(t->uptr))->locus=this;
           t_maxcov=t;
           strand=t->strand;
           if (t->ftype_id==gff_fid_mRNA) {
              is_mrna=true;
              }
           }
    }

   void addMerge(GffLocus& locus, GffObj* lnkrna) {
     //add all the elements of the other locus (merging)
     //-- merge mexons
     GArray<int> ovlexons(true,true); //list of locus.mexons indexes overlapping existing mexons
     int i=0; //index of first mexons with a merge
     int j=0; //index current mrna exon
     while (i<mexons.Count() && j<locus.mexons.Count()) {
            uint istart=mexons[i].start;
            uint iend=mexons[i].end;
            uint jstart=locus.mexons[j].start;
            uint jend=locus.mexons[j].end;
            if (iend<jstart) { i++; continue; }
            if (jend<istart) { j++; continue; }
            ovlexons.Add(j);
            //extend mexons[i] as needed
            if (jstart<istart) mexons[i].start=jstart;
            if (jend>iend) { //mexons[i] end extend
                mexons[i].end=jend;
                //now this could overlap the next mexon(s), so we have to merge them all
                while (i<mexons.Count()-1 && mexons[i].end>mexons[i+1].start) {
                    uint nextend=mexons[i+1].end;
                    mexons.Delete(i+1);
                    if (nextend>mexons[i].end) {
                        mexons[i].end=nextend;
                        break; //no need to check next mexons
                    }
                } //while next mexons merge
            } // mexons[i] end extend
            j++; //check the next locus.mexon
        }
        //-- add the rest of the non-overlapping mexons:
        GSeg seg;
        for (int i=0;i<locus.mexons.Count();i++) {
            seg.start=locus.mexons[i].start;
            seg.end=locus.mexons[i].end;
            if (!ovlexons.Exists(i)) mexons.Add(seg);
        }
     // -- add locus.rnas
     for (int i=0;i<locus.rnas.Count();i++) {
          ((GTData*)(locus.rnas[i]->uptr))->locus=this;
          if (locus.rnas[i]!=lnkrna) rnas.Add(locus.rnas[i]);
          }
        // -- adjust start/end as needed
     if (start>locus.start) start=locus.start;
     if (end<locus.end) end=locus.end;
     if (locus.is_mrna) is_mrna=true;
     if (t_maxcov->covlen<locus.t_maxcov->covlen)
            t_maxcov=locus.t_maxcov;
     }

    bool exonOverlap(GffLocus& loc) {
        //check if any mexons overlap!
        if (strand!=loc.strand || loc.start>end || start>loc.end) return false;
        int i=0;
        int j=0;
        while (i<mexons.Count() && j<loc.mexons.Count()) {
            uint istart=mexons[i].start;
            uint iend=mexons[i].end;
            uint jstart=loc.mexons[j].start;
            uint jend=loc.mexons[j].end;
            if (iend<jstart) { i++; continue; }
            if (jend<istart) { j++; continue; }
            //exon overlap found if we're here:
            return true;
        }
        return false;
    }

    bool add_RNA(GffObj* t) {
        //if (rnas.Count()==0) return true; //? should never be called on an empty locus
        if (t->gseq_id!=gseq_id || t->strand!=strand || t->start>end || start>t->end)
              return false; //rna must be on the same genomic seq
        //check for exon overlap with existing mexons
        //also update mexons accordingly if t is to be added
        bool hasovl=false;
        int i=0; //index of first mexons with a merge
        int j=0; //index current t exon
        GArray<int> ovlexons(true,true); //list of mrna exon indexes overlapping mexons
        while (i<mexons.Count() && j<t->exons.Count()) {
            uint istart=mexons[i].start;
            uint iend=mexons[i].end;
            uint jstart=t->exons[j]->start;
            uint jend=t->exons[j]->end;
            if (iend<jstart) { i++; continue; }
            if (jend<istart) { j++; continue; }
            //exon overlap found if we're here:
            ovlexons.Add(j);
            hasovl=true;
            //extend mexons[i] as needed
            if (jstart<istart) mexons[i].start=jstart;
            if (jend>iend) { //mexon stretch up
                mexons[i].end=jend;
                //now this could overlap the next mexon(s), so we have to merge them all
                while (i<mexons.Count()-1 && mexons[i].end>mexons[i+1].start) {
                    uint nextend=mexons[i+1].end;
                    mexons.Delete(i+1);
                    if (nextend>mexons[i].end) {
                        mexons[i].end=nextend;
                        break; //no need to check next mexons
                    }
                } //while next mexons merge
            } //possible mexons merge

            j++; //check the next t exon
        }//all vs all exon check loop
        if (hasovl) {
            GSeg seg;
             //add the rest of the non-overlapping exons
            for (int i=0;i<t->exons.Count();i++) {
                seg.start=t->exons[i]->start;
                seg.end=t->exons[i]->end;
                if (!ovlexons.Exists(i)) mexons.Add(seg);
                }
            rnas_add(t);
            // add to rnas
            ((GTData*)t->uptr)->locus=this;
            gseq_id=t->gseq_id;
            }
        return hasovl;
    }

    //simpler,basic adding of a mrna
    void rnas_add(GffObj* t) {
      rnas.Add(t);
      // adjust start/end
      //if (start==0 || start>t->start) start=t->start;
      if (start==0) start=t->start;
        else if (start>t->start) {
          start=t->start;
          }
      if (end<t->end) end=t->end;
      if (t_maxcov->covlen<t->covlen) t_maxcov=t;
      if (strand==0) strand=t->strand;
      if (t->ftype_id==gff_fid_mRNA) is_mrna=true;
      }
};

class GenomicSeqData {
  int gseq_id;
 public:
  const char* gseq_name;
  GList<GffObj> gfs; //all non-transcript features -> usually gene features
  GList<GffObj> rnas; //all transcripts on this genomic sequence
  GList<GffLocus> loci; //all loci clusters
  GList<GTData> tdata; //transcript data (uptr holder for all rnas loaded here)
  //GenomicSeqData(int gid=-1):rnas(true,true,false),loci(true,true,true),
  GenomicSeqData(int gid=-1):gfs(true, true, false),rnas((GCompareProc*)gfo_cmpByLoc),loci(true,true,false),
       tdata(false,true,false) {
  gseq_id=gid;
  if (gseq_id>=0) 
    gseq_name=GffObj::names->gseqs.getName(gseq_id);
  
  }
  bool operator==(GenomicSeqData& d){
    return gseq_id==d.gseq_id;
  }
  bool operator>(GenomicSeqData& d){
    return (gseq_id>d.gseq_id);
  }
  bool operator<(GenomicSeqData& d){
    return (gseq_id<d.gseq_id);
  }
};

int gseqCmpName(const pointer p1, const pointer p2);

class GSpliceSite {
 public:
  char nt[3];
  GSpliceSite(const char* c, bool revc=false) {
    nt[2]=0;
    if (c==NULL) {
      nt[0]=0;
      nt[1]=0;
      return;
      }
    if (revc) {
      nt[0]=toupper(ntComplement(c[1]));
      nt[1]=toupper(ntComplement(c[0]));
      }
    else {
      nt[0]=toupper(c[0]);
      nt[1]=toupper(c[1]);
      }
    }

  GSpliceSite(const char* intron, int intronlen, bool getAcceptor, bool revc=false) {
    nt[2]=0;
    if (intron==NULL || intronlen==0)
       GError("Error: invalid intron or intron len for GSpliceSite()!\n");
    const char* c=intron;
    if (revc) {
      if (!getAcceptor) c+=intronlen-2;
      nt[0]=toupper(ntComplement(c[1]));
      nt[1]=toupper(ntComplement(c[0]));
      }
    else { //on forward strand
      if (getAcceptor) c+=intronlen-2;
      nt[0]=toupper(c[0]);
      nt[1]=toupper(c[1]);
      }//forward strand
    }

  GSpliceSite(const char n1, const char n2) {
    nt[2]=0;
    nt[0]=toupper(n1);
    nt[1]=toupper(n2);
    }
  bool canonicalDonor() {
    return (nt[0]=='G' && (nt[1]=='C' || nt[1]=='T'));
    }
  bool operator==(GSpliceSite& c) {
    return (c.nt[0]==nt[0] && c.nt[1]==nt[1]);
    }
  bool operator==(GSpliceSite* c) {
    return (c->nt[0]==nt[0] && c->nt[1]==nt[1]);
    }
  bool operator==(const char* c) {
    //return (nt[0]==toupper(c[0]) && nt[1]==toupper(c[1]));
    //assumes given const nucleotides are uppercase already!
    return (nt[0]==c[0] && nt[1]==c[1]);
    }
  bool operator!=(const char* c) {
    //assumes given const nucleotides are uppercase already!
    return (nt[0]!=c[0] || nt[1]!=c[1]);
    }
};

struct GffLoader {
  GStr fname;
  FILE* f;
  bool transcriptsOnly;
  bool fullAttributes;
  bool noExonAttrs;
  bool mergeCloseExons;
  bool showWarnings;
  void load(GList<GenomicSeqData>&seqdata, GFValidateFunc* gf_validate=NULL, 
                      bool doCluster=true, bool doCollapseRedundant=true, 
                      bool matchAllIntrons=true, bool fuzzSpan=false, bool forceExons=false);
  GffLoader(const char* filename):fname(filename) {
      f=NULL;
      transcriptsOnly=true;
      fullAttributes=false;
      noExonAttrs=false;
      mergeCloseExons=false;
      showWarnings=false;
      if (fname=="-") {
         f=stdin;
         fname="stdin";
         }
        else {
          if ((f=fopen(fname.chars(), "r"))==NULL) {
            GError("Error: cannot open file %s!\n",fname.chars());
            }
          }
      }
  ~GffLoader() {
      if (f!=NULL && f!=stdin) fclose(f);
      }
};

void printFasta(FILE* f, GStr& defline, char* seq, int seqlen=-1);

//"position" a given coordinate x within a list of transcripts sorted by their start (lowest)
//coordinate, using quick-search; the returned int is the list index of the closest *higher*
//GffObj - i.e. starting right *ABOVE* the given coordinate
//Convention: returns -1 if there is no such GffObj (i.e. last GffObj starts below x)
int qsearch_rnas(uint x, GList<GffObj>& rnas);
int qsearch_gloci(uint x, GList<GffLocus>& loci);

GffObj* redundantTranscripts(GffObj& ti, GffObj&  tj, bool matchAllIntrons=true, bool fuzzSpan=false);

void placeGf(GffObj* t, GenomicSeqData* gdata, bool doCluster=true, bool collapseRedundant=true, 
                                  bool matchAllIntrons=true, bool fuzzSpan=false);
//void loadGFF(FILE* f, GList<GenomicSeqData>& seqdata, const char* fname);

void collectLocusData(GList<GenomicSeqData>& ref_data);

#endif