1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
/*
* Copyright (c) 1996-2001 Lucent Technologies.
* See README file for details.
*
*
* Routines for maximization of a one dimensional function f()
* over an interval [xlo,xhi]. In all cases. the flag argument
* controls the return:
* flag='x', the maximizer xmax is returned.
* otherwise, maximum f(xmax) is returned.
*
* max_grid(f,xlo,xhi,n,flag)
* grid maximization of f() over [xlo,xhi] with n intervals.
*
* max_golden(f,xlo,xhi,n,tol,err,flag)
* golden section maximization.
* If n>2, an initial grid search is performed with n intervals
* (this helps deal with local maxima).
* convergence criterion is |x-xmax| < tol.
* err is an error flag.
* if flag='x', return value is xmax.
* otherwise, return value is f(xmax).
*
* max_quad(f,xlo,xhi,n,tol,err,flag)
* quadratic maximization.
*
* max_nr()
* newton-raphson, handles multivariate case.
*
* TODO: additional error checking, non-convergence stop.
*/
#include <math.h>
#include <string.h>
#include "mutil.h"
extern double innerprod();
#define gold_rat 0.6180339887498948482045870
#define max_val(x,y) ((flag=='x') ? x : y)
double max_grid(f,xlo,xhi,n,flag)
double (*f)(), xlo, xhi;
int n;
char flag;
{ int i, mi;
mi = 0;
double x, y, mx, my;
my = 0.0;
for (i=0; i<=n; i++)
{ x = xlo + (xhi-xlo)*i/n;
y = f(x);
if ((i==0) || (y>my))
{ mx = x;
my = y;
mi = i;
}
}
if (mi==0) return(max_val(xlo,my));
if (mi==n) return(max_val(xhi,my));
return(max_val(mx,my));
}
double max_golden(f,xlo,xhi,n,tol,err,flag)
double (*f)(), xhi, xlo, tol;
int n, *err;
char flag;
{ double x0, x1, x2, x3, y0, y1, y2, y3;
*err = 0;
if (n>2)
{ x0 = max_grid(f,xlo,xhi,n,'x');
if (xlo<x0) xlo = x0-1.0/n;
if (xhi>x0) xhi = x0+1.0/n;
}
x0 = xlo; y0 = f(xlo);
x3 = xhi; y3 = f(xhi);
x1 = gold_rat*x0 + (1-gold_rat)*x3; y1 = f(x1);
x2 = gold_rat*x3 + (1-gold_rat)*x1; y2 = f(x2);
while (fabs(x3-x0)>tol)
{ if ((y1>=y0) && (y1>=y2))
{ x3 = x2; y3 = y2;
x2 = x1; y2 = y1;
x1 = gold_rat*x0 + (1-gold_rat)*x3; y1 = f(x1);
}
else if ((y2>=y3) && (y2>=y1))
{ x0 = x1; y0 = y1;
x1 = x2; y1 = y2;
x2 = gold_rat*x3 + (1-gold_rat)*x1; y2 = f(x2);
}
else
{ if (y3>y0) { x0 = x2; y0 = y2; }
else { x3 = x1; y3 = y1; }
x1 = gold_rat*x0 + (1-gold_rat)*x3; y1 = f(x1);
x2 = gold_rat*x3 + (1-gold_rat)*x1; y2 = f(x2);
}
}
if (y0>=y1) return(max_val(x0,y0));
if (y3>=y2) return(max_val(x3,y3));
return((y1>y2) ? max_val(x1,y1) : max_val(x2,y2));
}
double max_quad(f,xlo,xhi,n,tol,err,flag)
double (*f)(), xhi, xlo, tol;
int n, *err;
char flag;
{ double x0, x1, x2, xnew, y0, y1, y2, ynew, a, b;
*err = 0;
if (n>2)
{ x0 = max_grid(f,xlo,xhi,n,'x');
if (xlo<x0) xlo = x0-1.0/n;
if (xhi>x0) xhi = x0+1.0/n;
}
x0 = xlo; y0 = f(x0);
x2 = xhi; y2 = f(x2);
x1 = (x0+x2)/2; y1 = f(x1);
while (x2-x0>tol)
{
/* first, check (y0,y1,y2) is a peak. If not,
* next interval is the halve with larger of (y0,y2).
*/
if ((y0>y1) | (y2>y1))
{
if (y0>y2) { x2 = x1; y2 = y1; }
else { x0 = x1; y0 = y1; }
x1 = (x0+x2)/2;
y1 = f(x1);
}
else /* peak */
{ a = (y1-y0)*(x2-x1) + (y1-y2)*(x1-x0);
b = ((y1-y0)*(x2-x1)*(x2+x1) + (y1-y2)*(x1-x0)*(x1+x0))/2;
/* quadratic maximizer is b/a. But first check if a's too
* small, since we may be close to constant.
*/
if ((a<=0) | (b<x0*a) | (b>x2*a))
{ /* split the larger halve */
xnew = ((x2-x1) > (x1-x0)) ? (x1+x2)/2 : (x0+x1)/2;
}
else
{ xnew = b/a;
if (10*xnew < (9*x0+x1)) xnew = (9*x0+x1)/10;
if (10*xnew > (9*x2+x1)) xnew = (9*x2+x1)/10;
if (fabs(xnew-x1) < 0.001*(x2-x0))
{
if ((x2-x1) > (x1-x0))
xnew = (99*x1+x2)/100;
else
xnew = (99*x1+x0)/100;
}
}
ynew = f(xnew);
if (xnew>x1)
{ if (ynew >= y1) { x0 = x1; y0 = y1; x1 = xnew; y1 = ynew; }
else { x2 = xnew; y2 = ynew; }
}
else
{ if (ynew >= y1) { x2 = x1; y2 = y1; x1 = xnew; y1 = ynew; }
else { x0 = xnew; y0 = ynew; }
}
}
}
return(max_val(x1,y1));
}
double max_nr(F, coef, old_coef, f1, delta, J, p, maxit, tol, err)
double *coef, *old_coef, *f1, *delta, tol;
int (*F)(), p, maxit, *err;
jacobian *J;
{ double old_f, f, lambda;
int i, j, fr;
double nc, nd, cut;
int rank;
*err = NR_OK;
J->p = p;
fr = F(coef, &f, f1, J->Z); J->st = JAC_RAW;
for (i=0; i<maxit; i++)
{ memcpy(old_coef,coef,p*sizeof(double));
old_f = f;
rank = jacob_solve(J,f1);
memcpy(delta,f1,p*sizeof(double));
if (rank==0) /* NR won't move! */
delta[0] = -f/f1[0];
lambda = 1.0;
nc = innerprod(old_coef,old_coef,p);
nd = innerprod(delta, delta, p);
cut = sqrt(nc/nd);
if (cut>1.0) cut = 1.0;
cut *= 0.0001;
do
{ for (j=0; j<p; j++) coef[j] = old_coef[j] + lambda*delta[j];
fr = F(coef, &f, f1, J->Z); J->st = JAC_RAW;
if (fr==NR_BREAK) return(f);
lambda = (fr==NR_REDUCE) ? lambda/2 : lambda/10.0;
} while ((lambda>cut) & (f <= old_f - 1.0e-3));
if (f < old_f - 1.0e-3) { *err = NR_NDIV; return(f); }
if (fr==NR_REDUCE) return(f);
if (fabs(f-old_f) < tol) return(f);
}
*err = NR_NCON;
return(f);
}
|