1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
//Copyright (c) 2019 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include <gtest/gtest.h>
#include "../src/infill.h"
#include "ReadTestPolygons.h"
//#define TEST_INFILL_SVG_OUTPUT
#ifdef TEST_INFILL_SVG_OUTPUT
#include <cstdlib>
#include "../src/utils/SVG.h"
#endif //TEST_INFILL_SVG_OUTPUT
namespace cura
{
template<typename ... Ts>
std::string makeName(const std::string& format_string, Ts ... args)
{
constexpr int buff_size = 1024;
char buff[buff_size];
std::snprintf(buff, buff_size, format_string.c_str(), args...);
return std::string(buff);
}
coord_t getPatternMultiplier(const EFillMethod& pattern)
{
switch (pattern)
{
case EFillMethod::GRID: // fallthrough
case EFillMethod::TETRAHEDRAL: // fallthrough
case EFillMethod::QUARTER_CUBIC:
return 2;
case EFillMethod::TRIANGLES: // fallthrough
case EFillMethod::TRIHEXAGON: // fallthrough
case EFillMethod::CUBIC: // fallthrough
case EFillMethod::CUBICSUBDIV:
return 3;
default:
return 1;
}
}
struct InfillParameters
{
public:
// Actual infill parameters:
EFillMethod pattern;
bool zig_zagify;
bool connect_polygons;
coord_t line_distance;
std::string name;
InfillParameters(const EFillMethod& pattern, const bool& zig_zagify, const bool& connect_polygons, const coord_t& line_distance) :
pattern(pattern),
zig_zagify(zig_zagify),
connect_polygons(connect_polygons),
line_distance(line_distance)
{
name = makeName("InfillParameters_%d_%d_%d_%lld", (int)pattern, (int)zig_zagify, (int)connect_polygons, line_distance);
}
};
class InfillTestParameters
{
public:
bool valid; // <-- if the file isn't read (or anything else goes wrong with the setup) we can communicate it to the tests
std::string fail_reason;
size_t test_polygon_id;
// Parameters used to generate the infill:
InfillParameters params;
Polygons outline_polygons;
// Resulting infill:
Polygons result_lines;
Polygons result_polygons;
std::string name;
InfillTestParameters() :
valid(false),
fail_reason("Read of file with test polygons failed (see generateInfillTests), can't continue tests."),
test_polygon_id(-1),
params(InfillParameters(EFillMethod::NONE, false, false, 0)),
outline_polygons(Polygons()),
result_lines(Polygons()),
result_polygons(Polygons()),
name("UNNAMED")
{
}
InfillTestParameters(const InfillParameters& params, const size_t& test_polygon_id, const Polygons& outline_polygons, const Polygons& result_lines, const Polygons& result_polygons) :
valid(true),
fail_reason("__"),
test_polygon_id(test_polygon_id),
params(params),
outline_polygons(outline_polygons),
result_lines(result_lines),
result_polygons(result_polygons)
{
name = makeName("InfillTestParameters_P%d_Z%d_C%d_L%lld__%lld", (int)params.pattern, (int)params.zig_zagify, (int)params.connect_polygons, params.line_distance, test_polygon_id);
}
friend std::ostream& operator<<(std::ostream& os, const InfillTestParameters& params)
{
return os << params.name << "(" << (params.valid ? std::string("input OK") : params.fail_reason) << ")";
}
};
constexpr coord_t infill_line_width = 350;
constexpr coord_t infill_overlap = 0;
constexpr size_t infill_multiplier = 1;
const AngleDegrees fill_angle = 0.;
constexpr coord_t z = 100; // Future improvement: Also take an uneven layer, so we get the alternate.
constexpr coord_t shift = 0;
constexpr coord_t max_resolution = 10;
constexpr coord_t max_deviation = 5;
const std::vector<std::string> polygon_filenames =
{
"../tests/resources/polygon_concave.txt",
"../tests/resources/polygon_concave_hole.txt",
"../tests/resources/polygon_square.txt",
"../tests/resources/polygon_square_hole.txt",
"../tests/resources/polygon_triangle.txt",
"../tests/resources/polygon_two_squares.txt",
};
#ifdef TEST_INFILL_SVG_OUTPUT
void writeTestcaseSVG(const InfillTestParameters& params)
{
constexpr int buff_size = 1024;
char buff[buff_size];
std::snprintf(buff, buff_size, "/tmp/%s.svg", params.name.c_str());
const std::string filename(buff);
AABB aabb(params.outline_polygons);
SVG svgFile(filename.c_str(), aabb);
svgFile.writePolygons(params.outline_polygons , SVG::Color::BLUE);
svgFile.nextLayer();
svgFile.writePolylines(params.result_lines, SVG::Color::RED);
svgFile.nextLayer();
svgFile.writePolygons(params.result_polygons, SVG::Color::MAGENTA);
// Note: SVG writes 'itself' when the object is destroyed.
}
#endif //TEST_INFILL_SVG_OUTPUT
InfillTestParameters generateInfillToTest(const InfillParameters& params, const size_t& test_polygon_id, const Polygons& outline_polygons)
{
const EFillMethod pattern = params.pattern;
const bool zig_zagify = params.zig_zagify;
const bool connect_polygons = params.connect_polygons;
const coord_t line_distance = params.line_distance;
Infill infill
(
pattern,
zig_zagify,
connect_polygons,
outline_polygons,
infill_line_width,
line_distance,
infill_overlap,
infill_multiplier,
fill_angle,
z,
shift,
max_resolution,
max_deviation
); // There are some optional parameters, but these will do for now (future improvement?).
Settings infill_settings;
std::vector<VariableWidthLines> result_paths;
Polygons result_polygons;
Polygons result_lines;
infill.generate(result_paths, result_polygons, result_lines, infill_settings, nullptr, nullptr);
InfillTestParameters result = InfillTestParameters(params, test_polygon_id, outline_polygons, result_lines, result_polygons);
return result;
}
std::vector<InfillTestParameters> generateInfillTests()
{
constexpr bool do_zig_zaggify = true;
constexpr bool dont_zig_zaggify = false;
constexpr bool do_connect_polygons = true;
constexpr bool dont_connect_polygons = false;
std::vector<Polygons> shapes;
if (!readTestPolygons(polygon_filenames, shapes))
{
return { InfillTestParameters() }; // return an invalid singleton, that'll trip up the 'file read' assertion in the TEST_P's
}
/* Skip methods:
* - that require the SierpinskyInfillProvider class, since these test classes aren't equipped to handle that yet
* this can be considered a TODO for these testcases here, not in the methods themselves
* (these are; Cross, Cross-3D and Cubic-Subdivision)
* - Gyroid, since it doesn't handle the 100% infill and related cases well
* - Concentric and ZigZag, since they now use a method that starts from an extra infill wall, which fail these tests (TODO!)
*/
std::vector<EFillMethod> skip_methods = { EFillMethod::CONCENTRIC, EFillMethod::ZIG_ZAG, EFillMethod::CROSS, EFillMethod::CROSS_3D, EFillMethod::CUBICSUBDIV, EFillMethod::GYROID, EFillMethod::LIGHTNING };
std::vector<EFillMethod> methods;
for (int i_method = 0; i_method < static_cast<int>(EFillMethod::NONE); ++i_method)
{
const EFillMethod method = static_cast<EFillMethod>(i_method);
if (std::find(skip_methods.begin(), skip_methods.end(), method) == skip_methods.end()) // Only use if not in skipped.
{
methods.push_back(method);
}
}
std::vector<coord_t> line_distances = { 350, 400, 600, 800, 1200 };
std::vector<InfillTestParameters> parameters_list;
size_t test_polygon_id = 0;
for (const Polygons& polygons : shapes)
{
for (const EFillMethod& method : methods)
{
for (const coord_t& line_distance : line_distances)
{
parameters_list.push_back(generateInfillToTest(InfillParameters(method, dont_zig_zaggify, dont_connect_polygons, line_distance), test_polygon_id, polygons));
parameters_list.push_back(generateInfillToTest(InfillParameters(method, dont_zig_zaggify, do_connect_polygons, line_distance), test_polygon_id, polygons));
//parameters_list.push_back(generateInfillToTest(InfillParameters(method, do_zig_zaggify, dont_connect_polygons, line_distance), test_polygon_id, polygons));
//parameters_list.push_back(generateInfillToTest(InfillParameters(method, do_zig_zaggify, do_connect_polygons, line_distance), test_polygon_id, polygons));
// TODO: Re-enable when the extra infill walls are fully debugged or the discrepancy in the tests is explained.
}
}
++test_polygon_id;
}
return parameters_list;
}
class InfillTest : public testing::TestWithParam<InfillTestParameters> {};
INSTANTIATE_TEST_CASE_P(InfillTestcases, InfillTest, testing::ValuesIn(generateInfillTests()), [](testing::TestParamInfo<InfillTestParameters> info) { return info.param.name; });
TEST_P(InfillTest, TestInfillSanity)
{
InfillTestParameters params = GetParam();
#ifdef TEST_INFILL_SVG_OUTPUT
writeTestcaseSVG(params);
#endif //TEST_INFILL_SVG_OUTPUT
ASSERT_TRUE(params.valid) << params.fail_reason;
ASSERT_FALSE(params.result_polygons.empty() && params.result_lines.empty()) << "Infill should have been generated.";
double worst_case_zig_zag_added_area = 0;
if (params.params.zig_zagify || params.params.pattern == EFillMethod::ZIG_ZAG)
{
worst_case_zig_zag_added_area = params.outline_polygons.polygonLength() * infill_line_width;
}
const double min_available_area = std::abs(params.outline_polygons.offset(-params.params.line_distance / 2).area());
const double max_available_area = std::abs(params.outline_polygons.offset( params.params.line_distance / 2).area()) + worst_case_zig_zag_added_area;
const double min_expected_infill_area = (min_available_area * infill_line_width) / params.params.line_distance;
const double max_expected_infill_area = (max_available_area * infill_line_width) / params.params.line_distance + worst_case_zig_zag_added_area;
const double out_infill_area = ((params.result_polygons.polygonLength() + params.result_lines.polyLineLength()) * infill_line_width) / getPatternMultiplier(params.params.pattern);
ASSERT_GT((coord_t)max_available_area, (coord_t)out_infill_area) << "Infill area should allways be less than the total area available.";
ASSERT_GT((coord_t)out_infill_area, (coord_t)min_expected_infill_area) << "Infill area should be greater than the minimum area expected to be covered.";
ASSERT_LT((coord_t)out_infill_area, (coord_t)max_expected_infill_area) << "Infill area should be less than the maximum area to be covered.";
const coord_t maximum_error = 10_mu; // potential rounding error
const Polygons padded_shape_outline = params.outline_polygons.offset(infill_line_width / 2);
constexpr bool restitch = false; // No need to restitch polylines - that would introduce stitching errors.
ASSERT_LE(std::abs(padded_shape_outline.intersectionPolyLines(params.result_lines, restitch).polyLineLength() - params.result_lines.polyLineLength()), maximum_error) << "Infill (lines) should not be outside target polygon.";
Polygons result_polygon_lines = params.result_polygons;
for (PolygonRef poly : result_polygon_lines)
poly.add(poly.front());
ASSERT_LE(std::abs(padded_shape_outline.intersectionPolyLines(result_polygon_lines, restitch).polyLineLength() - result_polygon_lines.polyLineLength()), maximum_error) << "Infill (lines) should not be outside target polygon.";
}
} //namespace cura
|