1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667
|
//Copyright (c) 2019 Ultimaker B.V.
//CuraEngine is released under the terms of the AGPLv3 or higher.
#include <gtest/gtest.h>
#include <gmock/gmock.h>
#include <../src/utils/polygon.h> //The class under test.
#include <../src/utils/polygonUtils.h> // helper functions
#include <../src/utils/SVG.h> // helper functions
namespace cura
{
class PolygonTest: public testing::Test
{
public:
Polygon test_square;
Polygon pointy_square;
Polygon triangle;
Polygon clipper_bug;
Polygon clockwise_large;
Polygon clockwise_small;
Polygons clockwise_donut;
Polygon line;
static constexpr bool visualize = false;
void SetUp()
{
test_square.emplace_back(0, 0);
test_square.emplace_back(100, 0);
test_square.emplace_back(100, 100);
test_square.emplace_back(0, 100);
pointy_square.emplace_back(0, 0);
pointy_square.emplace_back(47, 0);
pointy_square.emplace_back(50, 80);
pointy_square.emplace_back(53, 0);
pointy_square.emplace_back(100, 0);
pointy_square.emplace_back(100, 100);
pointy_square.emplace_back(55, 100);
pointy_square.emplace_back(50, 180);
pointy_square.emplace_back(45, 100);
pointy_square.emplace_back(0, 100);
triangle.emplace_back(100, 0);
triangle.emplace_back(300, 0);
triangle.emplace_back(200, 100);
clipper_bug.emplace_back(107347, 120836);
clipper_bug.emplace_back(107309, 120910);
clipper_bug.emplace_back(107158, 120960);
clipper_bug.emplace_back(106760, 120839);
clipper_bug.emplace_back(106570, 120831);
clockwise_large.emplace_back(-100, -100);
clockwise_large.emplace_back(-100, 100);
clockwise_large.emplace_back(100, 100);
clockwise_large.emplace_back(100, -100);
clockwise_small.emplace_back(-50, -50);
clockwise_small.emplace_back(-50, 50);
clockwise_small.emplace_back(50, 50);
clockwise_small.emplace_back(50, -50);
Polygons outer, inner;
outer.add(clockwise_large);
inner.add(clockwise_small);
clockwise_donut = outer.difference(inner);
line.emplace_back(0, 0);
line.emplace_back(100, 0);
}
};
TEST_F(PolygonTest, polygonOffsetTest)
{
Polygons test_squares;
test_squares.add(test_square);
const Polygons expanded = test_squares.offset(25);
const coord_t expanded_length = expanded.polygonLength();
Polygons square_hole;
PolygonRef square_inverted = square_hole.newPoly();
for (int i = test_square.size() - 1; i >= 0; i--)
{
square_inverted.add(test_square[i]);
}
const Polygons contracted = square_hole.offset(25);
const coord_t contracted_length = contracted.polygonLength();
ASSERT_NEAR(expanded_length, contracted_length, 5) << "Offset on outside poly is different from offset on inverted poly!";
}
TEST_F(PolygonTest, polygonOffsetBugTest)
{
Polygons polys;
polys.add(clipper_bug);
const Polygons offsetted = polys.offset(-20);
for (const ConstPolygonRef poly : offsetted)
{
for (const Point& p : poly)
{
ASSERT_TRUE(polys.inside(p)) << "A negative offset should move the point towards the inside!";
}
}
}
TEST_F(PolygonTest, isOutsideTest)
{
Polygons test_triangle;
test_triangle.add(triangle);
EXPECT_FALSE(test_triangle.inside(Point(0, 100))) << "Left point should be outside the triangle.";
EXPECT_FALSE(test_triangle.inside(Point(100, 100))) << "Middle left point should be outside the triangle.";
EXPECT_FALSE(test_triangle.inside(Point(300, 100))) << "Middle right point should be outside the triangle.";
EXPECT_FALSE(test_triangle.inside(Point(500, 100))) << "Right point should be outside the triangle.";
EXPECT_FALSE(test_triangle.inside(Point(100, 200))) << "Above point should be outside the triangle.";
EXPECT_FALSE(test_triangle.inside(Point(100, -100))) << "Below point should be outside the triangle.";
}
TEST_F(PolygonTest, isInsideTest)
{
Polygons test_polys;
PolygonRef poly = test_polys.newPoly();
poly.add(Point(82124,98235));
poly.add(Point(83179,98691));
poly.add(Point(83434,98950));
poly.add(Point(82751,99026));
poly.add(Point(82528,99019));
poly.add(Point(81605,98854));
poly.add(Point(80401,98686));
poly.add(Point(79191,98595));
poly.add(Point(78191,98441));
poly.add(Point(78998,98299));
poly.add(Point(79747,98179));
poly.add(Point(80960,98095));
EXPECT_TRUE(test_polys.inside(Point(78315, 98440))) << "Point should be inside the polygons!";
}
TEST_F(PolygonTest, isOnBorderTest)
{
Polygons test_triangle;
test_triangle.add(triangle);
EXPECT_FALSE(test_triangle.inside(Point(200, 0), false)) << "Point is on the bottom edge of the triangle.";
EXPECT_TRUE(test_triangle.inside(Point(200, 0), true)) << "Point is on the bottom edge of the triangle.";
EXPECT_FALSE(test_triangle.inside(Point(150, 50), false)) << "Point is on a diagonal side of the triangle.";
EXPECT_TRUE(test_triangle.inside(Point(150, 50), true)) << "Point is on a diagonal side of the triangle.";
}
TEST_F(PolygonTest, DISABLED_isInsideLineTest) //Disabled because this fails due to a bug in Clipper.
{
Polygons polys;
polys.add(line);
EXPECT_FALSE(polys.inside(Point(50, 0), false)) << "Should be outside since it is on the border and border is considered outside.";
EXPECT_TRUE(polys.inside(Point(50, 0), true)) << "Should be inside since it is on the border and border is considered inside.";
}
TEST_F(PolygonTest, splitIntoPartsWithHoleTest)
{
const std::vector<PolygonsPart> parts = clockwise_donut.splitIntoParts();
EXPECT_EQ(parts.size(), 1) << "Difference between two polygons should be one PolygonsPart!";
}
TEST_F(PolygonTest, differenceContainsOriginalPointTest)
{
const PolygonsPart part = clockwise_donut.splitIntoParts()[0];
const ConstPolygonRef outer = part.outerPolygon();
EXPECT_NE(std::find(outer.begin(), outer.end(), clockwise_large[0]), outer.end()) << "Outer vertex must be in polygons difference.";
const ConstPolygonRef inner = part[1];
EXPECT_NE(std::find(inner.begin(), inner.end(), clockwise_small[0]), inner.end()) << "Inner vertex must be in polygons difference.";
}
TEST_F(PolygonTest, differenceClockwiseTest)
{
const PolygonsPart part = clockwise_donut.splitIntoParts()[0];
const ConstPolygonRef outer = part.outerPolygon();
//Apply the shoelace formula to determine surface area. If it's negative, the polygon is counterclockwise.
coord_t area = 0;
for (size_t point_index = 0; point_index < outer.size(); point_index++)
{
const size_t next_index = (point_index + 1) % outer.size();
const Point point = outer[point_index];
const Point next = outer[next_index];
area += (next.X - point.X) * (point.Y + next.Y);
}
EXPECT_LT(area, 0) << "Outer polygon should be counter-clockwise.";
const ConstPolygonRef inner = part[1];
area = 0;
for (size_t point_index = 0; point_index < inner.size(); point_index++)
{
const size_t next_index = (point_index + 1) % inner.size();
const Point point = inner[point_index];
const Point next = inner[next_index];
area += (next.X - point.X) * (point.Y + next.Y);
}
EXPECT_GT(area, 0) << "Inner polygon should be clockwise.";
}
TEST_F(PolygonTest, getEmptyHolesTest)
{
const Polygons holes = clockwise_donut.getEmptyHoles();
ASSERT_EQ(holes.size(), 1);
ASSERT_EQ(holes[0].size(), clockwise_small.size()) << "Empty hole should have the same amount of vertices as the original polygon.";
for (size_t point_index = 0; point_index < holes[0].size(); point_index++)
{
EXPECT_EQ(holes[0][point_index], clockwise_small[point_index]) << "Coordinates of the empty hole must be the same as the original polygon.";
}
}
TEST_F(PolygonTest, simplifyCircle)
{
Polygons circle_polygons;
PolygonRef circle = circle_polygons.newPoly();
constexpr coord_t radius = 100000;
constexpr double segment_length = 1000;
constexpr double tau = 6.283185307179586476925286766559; //2 * pi.
constexpr double increment = segment_length / radius; //Segments of 1000 units.
for (double angle = 0; angle < tau; angle += increment)
{
circle.add(Point(std::cos(angle) * radius, std::sin(angle) * radius));
}
constexpr coord_t minimum_segment_length = segment_length + 10;
circle_polygons.simplify(minimum_segment_length, 999999999); //With segments of 1000, we need to remove exactly half of the vertices to meet the requirement that all segments are >1010.
constexpr coord_t maximum_segment_length = segment_length * 2 + 20; //+20 for some error margin due to rounding.
for (size_t point_index = 1; point_index + 1 < circle.size(); point_index++) //Don't check the last vertex. Due to odd-numbered vertices it has to be shorter than the minimum.
{
coord_t segment_length = vSize(circle[point_index % circle.size()] - circle[point_index - 1]);
ASSERT_GE(segment_length, minimum_segment_length) << "Segment " << (point_index - 1) << " - " << point_index << " is too short!";
ASSERT_LE(segment_length, maximum_segment_length) << "Segment " << (point_index - 1) << " - " << point_index << " is too long!";
}
}
TEST_F(PolygonTest, simplifyLimitedLength)
{
//Generate a spiral with segments that gradually increase in length.
Polygons spiral_polygons;
PolygonRef spiral = spiral_polygons.newPoly();
spiral.add(Point());
coord_t segment_length = 1000;
double angle = 0;
Point last_position;
for (size_t i = 0; i < 10; i++)
{
const coord_t dx = std::cos(angle) * segment_length;
const coord_t dy = std::sin(angle) * segment_length;
last_position += Point(dx, dy);
spiral.add(last_position);
segment_length += 100;
angle += 0.1;
}
spiral_polygons.simplify(1550, 999999999); //Remove segments smaller than 1550 (infinite area error).
ASSERT_EQ(spiral.size(), 11 - 3) << "Should merge segments of length 1100 with 1200, 1300 with 1400 and first with last.";
}
TEST_F(PolygonTest, simplifySineLimitedError)
{
// Generate a straight line with sinusoidal errors which should be simplified back into a more straight line
// Hypothetically simplify() might replace each half period of the sine with a straight segment,
// but because simplify() is heuristic it introduces more segments.
// The function signature doesn't provide any guarantee about how much simplification will occur,
// but in practice it should at least simplify up to double the minimal segment count.
Polygons sine_polygons;
PolygonRef sine = sine_polygons.newPoly();
constexpr coord_t length = 10000;
constexpr coord_t deviation = 500;
constexpr size_t bulge_count = 5;
sine.emplace_back(length, 0);
sine.emplace_back(length, length);
sine.emplace_back(0, length);
sine.emplace_back(0, 0);
for (coord_t x = 100; x < length; x += 100)
{
sine.emplace_back(x, std::sin(INT2MM(x) / INT2MM(length) * M_PI * bulge_count ) * deviation);
}
Polygon sine_before = sine;
sine_polygons.simplify(length / 2, 2 * deviation);
if (visualize)
{
SVG svg("output/simplifySineLimitedError.svg", AABB(sine_before));
svg.writePolygon(sine_before);
svg.nextLayer();
svg.writePolygon(sine, SVG::Color::RED);
}
const size_t max_simplified_sine_segments = bulge_count * 2; // * 2 because simplify() is not precise and might not optimally simplify
EXPECT_THAT(sine.size(), testing::AllOf(testing::Ge(4), testing::Le(4 + max_simplified_sine_segments))) << "Should simplify each outward and each inward bulge.";
}
TEST_F(PolygonTest, simplifySineHighPoly)
{
// Generate a straight line with sinusoidal errors which should be simplified back into a more straight line
// Hypothetically simplify() might replace each half period of the sine with a straight segment,
// but because simplify() is heuristic it introduces more segments.
// The function signature doesn't provide any guarantee about how much simplification will occur,
// but in practice it should at least simplify up to double the minimal segment count.
Polygons sine_polygons;
PolygonRef sine = sine_polygons.newPoly();
constexpr coord_t length = 1000;
constexpr coord_t deviation = 100;
constexpr size_t bulge_count = 17;
constexpr coord_t allowed_simplification_height = 30;
constexpr coord_t allowed_segment_length = 100;
sine.emplace_back(length, 0);
sine.emplace_back(length, length);
sine.emplace_back(0, length);
sine.emplace_back(0, 0);
for (coord_t x = 1; x < length; x += 1)
{
coord_t y = std::sin(INT2MM(x) / INT2MM(length) * M_PI * bulge_count) * deviation;
if ( ! sine.empty())
{
coord_t y_mid = (y + sine.back().Y) / 2;
if (y_mid != y && y_mid != sine.back().Y
&& sine.back().X == x - 1
)
{
sine.emplace_back(x, y_mid);
}
}
sine.emplace_back(x, y);
if (x % (allowed_segment_length * 3) == 0) x += allowed_segment_length + 5;
}
Polygon sine_before = sine;
sine_polygons.simplify(allowed_segment_length, allowed_simplification_height);
// find largest height deviation
coord_t largest_dist = 0;
for (Point from : sine_before)
{
ClosestPolygonPoint cpp = PolygonUtils::findClosest(from, sine_polygons);
coord_t dist_between_polys = vSize(from - cpp.p());
largest_dist = std::max(largest_dist, dist_between_polys);
}
if (visualize)
{
SVG svg("output/simplifySineHighPoly.svg", AABB(sine_before));
svg.writePolygon(sine_before);
svg.nextLayer();
svg.writePolygon(sine, SVG::Color::RED);
}
EXPECT_THAT( largest_dist, testing::Le(allowed_simplification_height + 10)) << "Shouldn't exceed maximum error distance";
}
TEST_F(PolygonTest, simplifyCircleLimitedError)
{
//Generate a circle with increasing resolution
Polygons circle_polygons;
PolygonRef circle = circle_polygons.newPoly();
coord_t radius = 20000;
coord_t segment_length = 100;
for (double angle = 0; angle < 2 * M_PI; )
{
const coord_t dx = std::cos(angle) * radius;
const coord_t dy = std::sin(angle) * radius;
Point new_point(dx, dy);
assert(circle.empty() || std::abs( vSize(circle.back() - new_point) - segment_length) < 10); // we should now add a segment of the prescribed length
circle.add(new_point);
segment_length += 100;
angle += 2.0 * std::asin(0.5 * INT2MM(segment_length) / INT2MM(radius));
}
Polygon circle_before = circle;
coord_t allowed_simplification_height = 1000;
Polygons circle_polygons_before = circle_polygons;
circle_polygons.simplify(9999999, allowed_simplification_height);
// find largest height deviation
coord_t largest_dist = 0;
for (Point from : circle_before)
{
ClosestPolygonPoint cpp = PolygonUtils::findClosest(from, circle_polygons);
coord_t dist_between_polys = vSize(from - cpp.p());
largest_dist = std::max(largest_dist, dist_between_polys);
}
if (visualize)
{
SVG svg("output/simplifyCircleLimitedError.svg", AABB(circle_before));
svg.writePolygon(circle_before);
svg.nextLayer();
svg.writePolygon(circle, SVG::Color::RED);
}
EXPECT_THAT( largest_dist, testing::Le(allowed_simplification_height + 10)) << "Shouldn't exceed maximum error distance";
}
TEST_F(PolygonTest, simplifyCircleHighPoly)
{
//Generate a circle with extremely high point count, such that all segments are within rounding distance
Polygons circle_polygons;
PolygonRef circle = circle_polygons.newPoly();
coord_t radius = 2000;
coord_t segment_length = 1;
coord_t allowed_simplification_height = 50;
for (double angle = 0; angle < 2 * M_PI; )
{
const coord_t x = std::cos(angle) * radius;
const coord_t y = std::sin(angle) * radius;
Point new_point(x, y);
circle.add(new_point);
coord_t segment_length_here = segment_length;
if ( (x + y) % 5 == 0 )
{
segment_length_here = 500;
}
angle += 2.0 * std::asin(0.5 * INT2MM(segment_length_here) / INT2MM(radius));
}
Polygon circle_before = circle;
Polygons circle_polygons_before = circle_polygons;
circle_polygons.simplify(9999999, allowed_simplification_height);
// find largest height deviation
coord_t largest_dist = 0;
for (Point from : circle_before)
{
ClosestPolygonPoint cpp = PolygonUtils::findClosest(from, circle_polygons);
coord_t dist_between_polys = vSize(from - cpp.p());
largest_dist = std::max(largest_dist, dist_between_polys);
}
if (visualize)
{
SVG svg("output/simplifyCircleHighPoly.svg", AABB(circle_before));
svg.writePolygon(circle_before);
svg.nextLayer();
svg.writePolygon(circle, SVG::Color::RED);
}
EXPECT_THAT( largest_dist, testing::Le(allowed_simplification_height + 5)) << "Shouldn't exceed maximum error distance";
}
TEST_F(PolygonTest, simplifyColinear)
{
//Generate a line with several vertices halfway.
constexpr coord_t spacing = 100;
Polygons colinear_polygons;
PolygonRef colinear = colinear_polygons.newPoly();
for(size_t i = 0; i < 10; i++)
{
colinear.add(Point(i * spacing + i % 2 - 1, i * spacing + i % 2 - 1)); //Some jitter of 2 microns is allowed.
}
colinear.add(Point(spacing * 9, 0)); //Make it a triangle so that the area is not 0 or anything.
Polygon colinear_before = colinear;
colinear_polygons.simplify(20, 20); //Regardless of parameters, it should always remove vertices with less than 5 micron deviation.
if (visualize)
{
SVG svg("output/simplifyColinear.svg", AABB(colinear_before));
svg.writePolygon(colinear_before);
svg.nextLayer();
svg.writePolygon(colinear, SVG::Color::RED);
}
ASSERT_EQ(colinear_polygons.size(), 1) << "Polygon shouldn't have gotten removed altogether";
ASSERT_LE(colinear_polygons[0].size(), 8) << "At least half of the colinear points should have been removed";
}
TEST_F(PolygonTest, simplifyDegenerateVertex)
{
//Generate a line with several vertices halfway.
constexpr coord_t spacing = 100;
Polygons colinear_polygons;
PolygonRef colinear = colinear_polygons.newPoly();
colinear.emplace_back(0, 0);
colinear.emplace_back(spacing, 0);
colinear.emplace_back(spacing, spacing);
colinear.emplace_back(0, spacing);
colinear.emplace_back(0, -spacing); // degenerate vertex
Polygon colinear_before = colinear;
colinear_polygons.simplify(20, 5); //Regardless of parameters, it should always remove the one vertex
if (visualize)
{
SVG svg("output/simplifyDegenerateVertex.svg", AABB(colinear_before));
svg.writePolygon(colinear_before);
svg.nextLayer();
svg.writePolygon(colinear, SVG::Color::RED);
}
ASSERT_EQ(colinear_polygons.size(), 1) << "Polygon shouldn't have gotten removed altogether";
ASSERT_EQ(colinear_polygons[0].size(), 4) << "The one colinear vertex should have gotten removed.";
}
/*
* Test whether a polygon can be reduced to 1 or 2 vertices. In that case, it
* should get reduced to 0 or stay at 3.
*/
TEST_F(PolygonTest, simplifyToDegenerate)
{
//Generate a D shape with one long side and another curved side broken up into smaller pieces that can be removed.
Polygons d_polygons;
PolygonRef d = d_polygons.newPoly();
d.add(Point(0, 0));
d.add(Point(10, 55));
d.add(Point(0, 110));
d.simplify(100, 15);
EXPECT_NE(d.size(), 1);
EXPECT_NE(d.size(), 2);
}
/*
* The convex hull of a cube should still be a cube
*/
TEST_F(PolygonTest, convexTestCube)
{
Polygons d_polygons;
PolygonRef d = d_polygons.newPoly();
d.add(Point(0, 0));
d.add(Point(10, 0));
d.add(Point(10, 10));
d.add(Point(0, 10));
d_polygons.makeConvex();
EXPECT_EQ(d.size(), 4);
EXPECT_EQ(d[0], Point(0, 0));
EXPECT_EQ(d[1], Point(10, 0));
EXPECT_EQ(d[2], Point(10, 10));
EXPECT_EQ(d[3], Point(0, 10));
}
/*
* The convex hull of a star should remove the inner points of the star
*/
TEST_F(PolygonTest, convexHullStar)
{
Polygons d_polygons;
PolygonRef d = d_polygons.newPoly();
const int num_points = 10;
const int outer_radius = 20;
const int inner_radius = 10;
const double angle_step = M_PI * 2.0 / num_points;
for (int i = 0; i < num_points; ++ i)
{
coord_t x_outer = -std::cos(angle_step * i) * outer_radius;
coord_t y_outer = -std::sin(angle_step * i) * outer_radius;
d.add(Point(x_outer, y_outer));
coord_t x_inner = -std::cos(angle_step * (i + 0.5)) * inner_radius;
coord_t y_inner = -std::sin(angle_step * (i + 0.5)) * inner_radius;
d.add(Point(x_inner, y_inner));
}
d_polygons.makeConvex();
EXPECT_EQ(d.size(), num_points);
for (int i = 0; i < num_points; ++ i)
{
double angle = angle_step * i;
coord_t x = -std::cos(angle) * outer_radius;
coord_t y = -std::sin(angle) * outer_radius;
EXPECT_EQ(d[i], Point(x, y));
}
}
/*
* Multiple min-x points
* the convex hull the point with minimal x value. if there are multiple it might go wrong
*/
TEST_F(PolygonTest, convexHullMultipleMinX)
{
Polygons d_polygons;
PolygonRef d = d_polygons.newPoly();
d.add(Point(0, 0));
d.add(Point(0, -10));
d.add(Point(10, 0));
d.add(Point(0, 10));
/*
* x\ x\
* | \ | \
* x x should result in | x
* | / | /
* x/ x/
*
*/
d_polygons.makeConvex();
EXPECT_EQ(d.size(), 3);
}
/*
* The convex hull should remove collinear points
*/
TEST_F(PolygonTest, convexTestCubeColinear)
{
Polygons d_polygons;
PolygonRef d = d_polygons.newPoly();
d.add(Point(0, 0));
d.add(Point(5, 0));
d.add(Point(10, 0));
d.add(Point(10, 5));
d.add(Point(10, 10));
d.add(Point(5, 10));
d.add(Point(0, 10));
d.add(Point(0, 5));
d_polygons.makeConvex();
EXPECT_EQ(d.size(), 4);
EXPECT_EQ(d[0], Point(0, 0));
EXPECT_EQ(d[1], Point(10, 0));
EXPECT_EQ(d[2], Point(10, 10));
EXPECT_EQ(d[3], Point(0, 10));
}
/*
* The convex hull should remove duplicate points
*/
TEST_F(PolygonTest, convexHullRemoveDuplicatePoints)
{
Polygons d_polygons;
PolygonRef d = d_polygons.newPoly();
d.add(Point(0, 0));
d.add(Point(0, 0));
d.add(Point(10, 0));
d.add(Point(10, 0));
d.add(Point(10, 10));
d.add(Point(10, 10));
d.add(Point(0, 10));
d.add(Point(0, 10));
d_polygons.makeConvex();
EXPECT_EQ(d.size(), 4);
EXPECT_EQ(d[0], Point(0, 0));
EXPECT_EQ(d[1], Point(10, 0));
EXPECT_EQ(d[2], Point(10, 10));
EXPECT_EQ(d[3], Point(0, 10));
}
}
|