1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
|
# Copyright (c) 2020 Ultimaker B.V.
# Cura is released under the terms of the LGPLv3 or higher.
import numpy
import math
from PyQt6.QtGui import QImage, qRed, qGreen, qBlue, qAlpha
from PyQt6.QtCore import Qt
from UM.Mesh.MeshReader import MeshReader
from UM.Mesh.MeshBuilder import MeshBuilder
from UM.Math.Vector import Vector
from UM.Job import Job
from UM.Logger import Logger
from .ImageReaderUI import ImageReaderUI
from cura.Scene.CuraSceneNode import CuraSceneNode as SceneNode
class ImageReader(MeshReader):
def __init__(self) -> None:
super().__init__()
self._supported_extensions = [".jpg", ".jpeg", ".bmp", ".gif", ".png"]
self._ui = ImageReaderUI(self)
def preRead(self, file_name, *args, **kwargs):
img = QImage(file_name)
if img.isNull():
Logger.log("e", "Image is corrupt.")
return MeshReader.PreReadResult.failed
width = img.width()
depth = img.height()
largest = max(width, depth)
width = width / largest * self._ui.default_width
depth = depth / largest * self._ui.default_depth
self._ui.setWidthAndDepth(width, depth)
self._ui.showConfigUI()
self._ui.waitForUIToClose()
if self._ui.getCancelled():
return MeshReader.PreReadResult.cancelled
return MeshReader.PreReadResult.accepted
def _read(self, file_name):
size = max(self._ui.getWidth(), self._ui.getDepth())
return self._generateSceneNode(file_name, size, self._ui.peak_height, self._ui.base_height, self._ui.smoothing, 512, self._ui.lighter_is_higher, self._ui.use_transparency_model, self._ui.transmittance_1mm)
def _generateSceneNode(self, file_name, xz_size, height_from_base, base_height, blur_iterations, max_size, lighter_is_higher, use_transparency_model, transmittance_1mm):
scene_node = SceneNode()
mesh = MeshBuilder()
img = QImage(file_name)
if img.isNull():
Logger.log("e", "Image is corrupt.")
return None
width = max(img.width(), 2)
height = max(img.height(), 2)
aspect = height / width
if img.width() < 2 or img.height() < 2:
img = img.scaled(width, height, Qt.AspectRatioMode.IgnoreAspectRatio)
height_from_base = max(height_from_base, 0)
base_height = max(base_height, 0)
xz_size = max(xz_size, 1)
scale_vector = Vector(xz_size, height_from_base, xz_size)
if width > height:
scale_vector = scale_vector.set(z=scale_vector.z * aspect)
elif height > width:
scale_vector = scale_vector.set(x=scale_vector.x / aspect)
if width > max_size or height > max_size:
scale_factor = max_size / width
if height > width:
scale_factor = max_size / height
width = int(max(round(width * scale_factor), 2))
height = int(max(round(height * scale_factor), 2))
img = img.scaled(width, height, Qt.AspectRatioMode.IgnoreAspectRatio)
width_minus_one = width - 1
height_minus_one = height - 1
Job.yieldThread()
texel_width = 1.0 / width_minus_one * scale_vector.x
texel_height = 1.0 / height_minus_one * scale_vector.z
height_data = numpy.zeros((height, width), dtype = numpy.float32)
for x in range(0, width):
for y in range(0, height):
qrgb = img.pixel(x, y)
if use_transparency_model:
height_data[y, x] = (0.299 * math.pow(qRed(qrgb) / 255.0, 2.2) + 0.587 * math.pow(qGreen(qrgb) / 255.0, 2.2) + 0.114 * math.pow(qBlue(qrgb) / 255.0, 2.2))
else:
height_data[y, x] = (0.212655 * qRed(qrgb) + 0.715158 * qGreen(qrgb) + 0.072187 * qBlue(qrgb)) / 255 # fast computation ignoring gamma and degamma
Job.yieldThread()
if lighter_is_higher == use_transparency_model:
height_data = 1 - height_data
for _ in range(0, blur_iterations):
copy = numpy.pad(height_data, ((1, 1), (1, 1)), mode = "edge")
height_data += copy[1:-1, 2:]
height_data += copy[1:-1, :-2]
height_data += copy[2:, 1:-1]
height_data += copy[:-2, 1:-1]
height_data += copy[2:, 2:]
height_data += copy[:-2, 2:]
height_data += copy[2:, :-2]
height_data += copy[:-2, :-2]
height_data /= 9
Job.yieldThread()
if use_transparency_model:
divisor = 1.0 / math.log(transmittance_1mm / 100.0) # log-base doesn't matter here. Precompute this value for faster computation of each pixel.
min_luminance = (transmittance_1mm / 100.0) ** height_from_base
for (y, x) in numpy.ndindex(height_data.shape):
mapped_luminance = min_luminance + (1.0 - min_luminance) * height_data[y, x]
height_data[y, x] = base_height + divisor * math.log(mapped_luminance) # use same base as a couple lines above this
else:
height_data *= scale_vector.y
height_data += base_height
if img.hasAlphaChannel():
for x in range(0, width):
for y in range(0, height):
height_data[y, x] *= qAlpha(img.pixel(x, y)) / 255.0
heightmap_face_count = 2 * height_minus_one * width_minus_one
total_face_count = heightmap_face_count + (width_minus_one * 2) * (height_minus_one * 2) + 2
mesh.reserveFaceCount(total_face_count)
# initialize to texel space vertex offsets.
# 6 is for 6 vertices for each texel quad.
heightmap_vertices = numpy.zeros((width_minus_one * height_minus_one, 6, 3), dtype = numpy.float32)
heightmap_vertices = heightmap_vertices + numpy.array([[
[0, base_height, 0],
[0, base_height, texel_height],
[texel_width, base_height, texel_height],
[texel_width, base_height, texel_height],
[texel_width, base_height, 0],
[0, base_height, 0]
]], dtype = numpy.float32)
offsetsz, offsetsx = numpy.mgrid[0: height_minus_one, 0: width - 1]
offsetsx = numpy.array(offsetsx, numpy.float32).reshape(-1, 1) * texel_width
offsetsz = numpy.array(offsetsz, numpy.float32).reshape(-1, 1) * texel_height
# offsets for each texel quad
heightmap_vertex_offsets = numpy.concatenate([offsetsx, numpy.zeros((offsetsx.shape[0], offsetsx.shape[1]), dtype = numpy.float32), offsetsz], 1)
heightmap_vertices += heightmap_vertex_offsets.repeat(6, 0).reshape(-1, 6, 3)
# apply height data to y values
heightmap_vertices[:, 0, 1] = heightmap_vertices[:, 5, 1] = height_data[:-1, :-1].reshape(-1)
heightmap_vertices[:, 1, 1] = height_data[1:, :-1].reshape(-1)
heightmap_vertices[:, 2, 1] = heightmap_vertices[:, 3, 1] = height_data[1:, 1:].reshape(-1)
heightmap_vertices[:, 4, 1] = height_data[:-1, 1:].reshape(-1)
heightmap_indices = numpy.array(numpy.mgrid[0:heightmap_face_count * 3], dtype = numpy.int32).reshape(-1, 3)
mesh._vertices[0:(heightmap_vertices.size // 3), :] = heightmap_vertices.reshape(-1, 3)
mesh._indices[0:(heightmap_indices.size // 3), :] = heightmap_indices
mesh._vertex_count = heightmap_vertices.size // 3
mesh._face_count = heightmap_indices.size // 3
geo_width = width_minus_one * texel_width
geo_height = height_minus_one * texel_height
# bottom
mesh.addFaceByPoints(0, 0, 0, 0, 0, geo_height, geo_width, 0, geo_height)
mesh.addFaceByPoints(geo_width, 0, geo_height, geo_width, 0, 0, 0, 0, 0)
# north and south walls
for n in range(0, width_minus_one):
x = n * texel_width
nx = (n + 1) * texel_width
hn0 = height_data[0, n]
hn1 = height_data[0, n + 1]
hs0 = height_data[height_minus_one, n]
hs1 = height_data[height_minus_one, n + 1]
mesh.addFaceByPoints(x, 0, 0, nx, 0, 0, nx, hn1, 0)
mesh.addFaceByPoints(nx, hn1, 0, x, hn0, 0, x, 0, 0)
mesh.addFaceByPoints(x, 0, geo_height, nx, 0, geo_height, nx, hs1, geo_height)
mesh.addFaceByPoints(nx, hs1, geo_height, x, hs0, geo_height, x, 0, geo_height)
# west and east walls
for n in range(0, height_minus_one):
y = n * texel_height
ny = (n + 1) * texel_height
hw0 = height_data[n, 0]
hw1 = height_data[n + 1, 0]
he0 = height_data[n, width_minus_one]
he1 = height_data[n + 1, width_minus_one]
mesh.addFaceByPoints(0, 0, y, 0, 0, ny, 0, hw1, ny)
mesh.addFaceByPoints(0, hw1, ny, 0, hw0, y, 0, 0, y)
mesh.addFaceByPoints(geo_width, 0, y, geo_width, 0, ny, geo_width, he1, ny)
mesh.addFaceByPoints(geo_width, he1, ny, geo_width, he0, y, geo_width, 0, y)
mesh.calculateNormals(fast = True)
scene_node.setMeshData(mesh.build())
return scene_node
|