1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928
|
# Contributed by Seva Alekseyev <sevaa@nih.gov> with National Institutes of Health, 2016
# Cura is released under the terms of the LGPLv3 or higher.
from math import pi, sin, cos, sqrt
from typing import Dict
import numpy
from UM.Job import Job
from UM.Logger import Logger
from UM.Math.Matrix import Matrix
from UM.Math.Vector import Vector
from UM.Mesh.MeshBuilder import MeshBuilder
from UM.Mesh.MeshReader import MeshReader
from cura.Scene.CuraSceneNode import CuraSceneNode as SceneNode
MYPY = False
try:
if not MYPY:
import xml.etree.cElementTree as ET
except ImportError:
import xml.etree.ElementTree as ET
# TODO: preserve the structure of scenes that contain several objects
# Use CADPart, for example, to distinguish between separate objects
DEFAULT_SUBDIV = 16 # Default subdivision factor for spheres, cones, and cylinders
EPSILON = 0.000001
class Shape:
# Expects verts in MeshBuilder-ready format, as a n by 3 mdarray
# with vertices stored in rows
def __init__(self, verts, faces, index_base, name):
self.verts = verts
self.faces = faces
# Those are here for debugging purposes only
self.index_base = index_base
self.name = name
class X3DReader(MeshReader):
def __init__(self) -> None:
super().__init__()
self._supported_extensions = [".x3d"]
self._namespaces = {} # type: Dict[str, str]
# Main entry point
# Reads the file, returns a SceneNode (possibly with nested ones), or None
def _read(self, file_name):
try:
self.defs = {}
self.shapes = []
tree = ET.parse(file_name)
xml_root = tree.getroot()
if xml_root.tag != "X3D":
return None
scale = 1000 # Default X3D unit it one meter, while Cura's is one millimeters
if xml_root[0].tag == "head":
for head_node in xml_root[0]:
if head_node.tag == "unit" and head_node.attrib.get("category") == "length":
scale *= float(head_node.attrib["conversionFactor"])
break
xml_scene = xml_root[1]
else:
xml_scene = xml_root[0]
if xml_scene.tag != "Scene":
return None
self.transform = Matrix()
self.transform.setByScaleFactor(scale)
self.index_base = 0
# Traverse the scene tree, populate the shapes list
self.processChildNodes(xml_scene)
if self.shapes:
builder = MeshBuilder()
builder.setVertices(numpy.concatenate([shape.verts for shape in self.shapes]))
builder.setIndices(numpy.concatenate([shape.faces for shape in self.shapes]))
builder.calculateNormals()
builder.setFileName(file_name)
mesh_data = builder.build()
# Manually try and get the extents of the mesh_data. This should prevent nasty NaN issues from
# leaving the reader.
mesh_data.getExtents()
node = SceneNode()
node.setMeshData(mesh_data)
node.setSelectable(True)
node.setName(file_name)
else:
return None
except Exception:
Logger.logException("e", "Exception in X3D reader")
return None
return node
# ------------------------- XML tree traversal
def processNode(self, xml_node):
xml_node = self.resolveDefUse(xml_node)
if xml_node is None:
return
tag = xml_node.tag
if tag in ("Group", "StaticGroup", "CADAssembly", "CADFace", "CADLayer", "Collision"):
self.processChildNodes(xml_node)
if tag == "CADPart":
self.processTransform(xml_node) # TODO: split the parts
elif tag == "LOD":
self.processNode(xml_node[0])
elif tag == "Transform":
self.processTransform(xml_node)
elif tag == "Shape":
self.processShape(xml_node)
def processShape(self, xml_node):
# Find the geometry and the appearance inside the Shape
geometry = appearance = None
for sub_node in xml_node:
if sub_node.tag == "Appearance" and not appearance:
appearance = self.resolveDefUse(sub_node)
elif sub_node.tag in self.geometry_importers and not geometry:
geometry = self.resolveDefUse(sub_node)
# TODO: appearance is completely ignored. At least apply the material color...
if not geometry is None:
try:
self.verts = self.faces = [] # Safeguard
self.geometry_importers[geometry.tag](self, geometry)
m = self.transform.getData()
verts = m.dot(self.verts)[:3].transpose()
self.shapes.append(Shape(verts, self.faces, self.index_base, geometry.tag))
self.index_base += len(verts)
except Exception:
Logger.logException("e", "Exception in X3D reader while reading %s", geometry.tag)
# Returns the referenced node if the node has USE, the same node otherwise.
# May return None is USE points at a nonexistent node
# In X3DOM, when both DEF and USE are in the same node, DEF is ignored.
# Big caveat: XML element objects may evaluate to boolean False!!!
# Don't ever use "if node:", use "if not node is None:" instead
def resolveDefUse(self, node):
USE = node.attrib.get("USE")
if USE:
return self.defs.get(USE, None)
DEF = node.attrib.get("DEF")
if DEF:
self.defs[DEF] = node
return node
def processChildNodes(self, node):
for c in node:
self.processNode(c)
Job.yieldThread()
# Since this is a grouping node, will recurse down the tree.
# According to the spec, the final transform matrix is:
# T * C * R * SR * S * -SR * -C
# Where SR corresponds to the rotation matrix to scaleOrientation
# C and SR are rather exotic. S, slightly less so.
def processTransform(self, node):
rot = readRotation(node, "rotation", (0, 0, 1, 0)) # (angle, axisVactor) tuple
trans = readVector(node, "translation", (0, 0, 0)) # Vector
scale = readVector(node, "scale", (1, 1, 1)) # Vector
center = readVector(node, "center", (0, 0, 0)) # Vector
scale_orient = readRotation(node, "scaleOrientation", (0, 0, 1, 0)) # (angle, axisVactor) tuple
# Store the previous transform; in Cura, the default matrix multiplication is in place
prev = Matrix(self.transform.getData()) # It's deep copy, I've checked
# The rest of transform manipulation will be applied in place
got_center = (center.x != 0 or center.y != 0 or center.z != 0)
T = self.transform
if trans.x != 0 or trans.y != 0 or trans.z != 0:
T.translate(trans)
if got_center:
T.translate(center)
if rot[0] != 0:
T.rotateByAxis(*rot)
if scale.x != 1 or scale.y != 1 or scale.z != 1:
got_scale_orient = scale_orient[0] != 0
if got_scale_orient:
T.rotateByAxis(*scale_orient)
# No scale by vector in place operation in UM
S = Matrix()
S.setByScaleVector(scale)
T.multiply(S)
if got_scale_orient:
T.rotateByAxis(-scale_orient[0], scale_orient[1])
if got_center:
T.translate(-center)
self.processChildNodes(node)
self.transform = prev
# ------------------------- Geometry importers
# They are supposed to fill the self.verts and self.faces arrays, the caller will do the rest
# Primitives
def processGeometryBox(self, node):
(dx, dy, dz) = readFloatArray(node, "size", [2, 2, 2])
dx /= 2
dy /= 2
dz /= 2
self.reserveFaceAndVertexCount(12, 8)
# xz plane at +y, ccw
self.addVertex(dx, dy, dz)
self.addVertex(-dx, dy, dz)
self.addVertex(-dx, dy, -dz)
self.addVertex(dx, dy, -dz)
# xz plane at -y
self.addVertex(dx, -dy, dz)
self.addVertex(-dx, -dy, dz)
self.addVertex(-dx, -dy, -dz)
self.addVertex(dx, -dy, -dz)
self.addQuad(0, 1, 2, 3) # +y
self.addQuad(4, 0, 3, 7) # +x
self.addQuad(7, 3, 2, 6) # -z
self.addQuad(6, 2, 1, 5) # -x
self.addQuad(5, 1, 0, 4) # +z
self.addQuad(7, 6, 5, 4) # -y
# The sphere is subdivided into nr rings and ns segments
def processGeometrySphere(self, node):
r = readFloat(node, "radius", 0.5)
subdiv = readIntArray(node, "subdivision", None)
if subdiv:
if len(subdiv) == 1:
nr = ns = subdiv[0]
else:
(nr, ns) = subdiv
else:
nr = ns = DEFAULT_SUBDIV
lau = pi / nr # Unit angle of latitude (rings) for the given tessellation
lou = 2 * pi / ns # Unit angle of longitude (segments)
self.reserveFaceAndVertexCount(ns*(nr*2 - 2), 2 + (nr - 1)*ns)
# +y and -y poles
self.addVertex(0, r, 0)
self.addVertex(0, -r, 0)
# The non-polar vertices go from x=0, negative z plane counterclockwise -
# to -x, to +z, to +x, back to -z
for ring in range(1, nr):
for seg in range(ns):
self.addVertex(-r*sin(lou * seg) * sin(lau * ring),
r*cos(lau * ring),
-r*cos(lou * seg) * sin(lau * ring))
vb = 2 + (nr - 2) * ns # First vertex index for the bottom cap
# Faces go in order: top cap, sides, bottom cap.
# Sides go by ring then by segment.
# Caps
# Top cap face vertices go in order: down right up
# (starting from +y pole)
# Bottom cap goes: up left down (starting from -y pole)
for seg in range(ns):
self.addTri(0, seg + 2, (seg + 1) % ns + 2)
self.addTri(1, vb + (seg + 1) % ns, vb + seg)
# Sides
# Side face vertices go in order: down right upleft, downright up left
for ring in range(nr - 2):
tvb = 2 + ring * ns
# First vertex index for the top edge of the ring
bvb = tvb + ns
# First vertex index for the bottom edge of the ring
for seg in range(ns):
nseg = (seg + 1) % ns
self.addQuad(tvb + seg, bvb + seg, bvb + nseg, tvb + nseg)
def processGeometryCone(self, node):
r = readFloat(node, "bottomRadius", 1)
height = readFloat(node, "height", 2)
bottom = readBoolean(node, "bottom", True)
side = readBoolean(node, "side", True)
n = readInt(node, "subdivision", DEFAULT_SUBDIV)
d = height / 2
angle = 2 * pi / n
self.reserveFaceAndVertexCount((n if side else 0) + (n-2 if bottom else 0), n+1)
# Vertex 0 is the apex, vertices 1..n are the bottom
self.addVertex(0, d, 0)
for i in range(n):
self.addVertex(-r * sin(angle * i), -d, -r * cos(angle * i))
# Side face vertices go: up down right
if side:
for i in range(n):
self.addTri(1 + (i + 1) % n, 0, 1 + i)
if bottom:
for i in range(2, n):
self.addTri(1, i, i+1)
def processGeometryCylinder(self, node):
r = readFloat(node, "radius", 1)
height = readFloat(node, "height", 2)
bottom = readBoolean(node, "bottom", True)
side = readBoolean(node, "side", True)
top = readBoolean(node, "top", True)
n = readInt(node, "subdivision", DEFAULT_SUBDIV)
nn = n * 2
angle = 2 * pi / n
hh = height/2
self.reserveFaceAndVertexCount((nn if side else 0) + (n - 2 if top else 0) + (n - 2 if bottom else 0), nn)
# The seam is at x=0, z=-r, vertices go ccw -
# to pos x, to neg z, to neg x, back to neg z
for i in range(n):
rs = -r * sin(angle * i)
rc = -r * cos(angle * i)
self.addVertex(rs, hh, rc)
self.addVertex(rs, -hh, rc)
if side:
for i in range(n):
ni = (i + 1) % n
self.addQuad(ni * 2 + 1, ni * 2, i * 2, i * 2 + 1)
for i in range(2, nn-3, 2):
if top:
self.addTri(0, i, i+2)
if bottom:
self.addTri(1, i+1, i+3)
# Semi-primitives
def processGeometryElevationGrid(self, node):
dx = readFloat(node, "xSpacing", 1)
dz = readFloat(node, "zSpacing", 1)
nx = readInt(node, "xDimension", 0)
nz = readInt(node, "zDimension", 0)
height = readFloatArray(node, "height", False)
ccw = readBoolean(node, "ccw", True)
if nx <= 0 or nz <= 0 or len(height) < nx*nz:
return # That's weird, the wording of the standard suggests grids with zero quads are somehow valid
self.reserveFaceAndVertexCount(2*(nx-1)*(nz-1), nx*nz)
for z in range(nz):
for x in range(nx):
self.addVertex(x * dx, height[z*nx + x], z * dz)
for z in range(1, nz):
for x in range(1, nx):
self.addTriFlip((z - 1)*nx + x - 1, z*nx + x, (z - 1)*nx + x, ccw)
self.addTriFlip((z - 1)*nx + x - 1, z*nx + x - 1, z*nx + x, ccw)
def processGeometryExtrusion(self, node):
ccw = readBoolean(node, "ccw", True)
begin_cap = readBoolean(node, "beginCap", True)
end_cap = readBoolean(node, "endCap", True)
cross = readFloatArray(node, "crossSection", (1, 1, 1, -1, -1, -1, -1, 1, 1, 1))
cross = [(cross[i], cross[i+1]) for i in range(0, len(cross), 2)]
spine = readFloatArray(node, "spine", (0, 0, 0, 0, 1, 0))
spine = [(spine[i], spine[i+1], spine[i+2]) for i in range(0, len(spine), 3)]
orient = readFloatArray(node, "orientation", None)
if orient:
# This converts X3D's axis/angle rotation to a 3x3 numpy matrix
def toRotationMatrix(rot):
(x, y, z) = rot[:3]
a = rot[3]
s = sin(a)
c = cos(a)
t = 1-c
return numpy.array((
(x * x * t + c, x * y * t - z*s, x * z * t + y * s),
(x * y * t + z*s, y * y * t + c, y * z * t - x * s),
(x * z * t - y * s, y * z * t + x * s, z * z * t + c)))
orient = [toRotationMatrix(orient[i:i+4]) if orient[i+3] != 0 else None for i in range(0, len(orient), 4)]
scale = readFloatArray(node, "scale", None)
if scale:
scale = [numpy.array(((scale[i], 0, 0), (0, 1, 0), (0, 0, scale[i+1])))
if scale[i] != 1 or scale[i+1] != 1 else None for i in range(0, len(scale), 2)]
# Special treatment for the closed spine and cross section.
# Let's save some memory by not creating identical but distinct vertices;
# later we'll introduce conditional logic to link the last vertex with
# the first one where necessary.
crossClosed = cross[0] == cross[-1]
if crossClosed:
cross = cross[:-1]
nc = len(cross)
cross = [numpy.array((c[0], 0, c[1])) for c in cross]
ncf = nc if crossClosed else nc - 1
# Face count along the cross; for closed cross, it's the same as the
# respective vertex count
spine_closed = spine[0] == spine[-1]
if spine_closed:
spine = spine[:-1]
ns = len(spine)
spine = [Vector(*s) for s in spine]
nsf = ns if spine_closed else ns - 1
# This will be used for fallback, where the current spine point joins
# two collinear spine segments. No need to recheck the case of the
# closed spine/last-to-first point juncture; if there's an angle there,
# it would kick in on the first iteration of the main loop by spine.
def findFirstAngleNormal():
for i in range(1, ns - 1):
spt = spine[i]
z = (spine[i + 1] - spt).cross(spine[i - 1] - spt)
if z.length() > EPSILON:
return z
# All the spines are collinear. Fallback to the rotated source
# XZ plane.
# TODO: handle the situation where the first two spine points match
if len(spine) < 2:
return Vector(0, 0, 1)
v = spine[1] - spine[0]
orig_y = Vector(0, 1, 0)
orig_z = Vector(0, 0, 1)
if v.cross(orig_y).length() > EPSILON:
# Spine at angle with global y - rotate the z accordingly
a = v.cross(orig_y) # Axis of rotation to get to the Z
(x, y, z) = a.normalized().getData()
s = a.length()/v.length()
c = sqrt(1-s*s)
t = 1-c
m = numpy.array((
(x * x * t + c, x * y * t + z*s, x * z * t - y * s),
(x * y * t - z*s, y * y * t + c, y * z * t + x * s),
(x * z * t + y * s, y * z * t - x * s, z * z * t + c)))
orig_z = Vector(*m.dot(orig_z.getData()))
return orig_z
self.reserveFaceAndVertexCount(2*nsf*ncf + (nc - 2 if begin_cap else 0) + (nc - 2 if end_cap else 0), ns*nc)
z = None
for i, spt in enumerate(spine):
if (i > 0 and i < ns - 1) or spine_closed:
snext = spine[(i + 1) % ns]
sprev = spine[(i - 1 + ns) % ns]
y = snext - sprev
vnext = snext - spt
vprev = sprev - spt
try_z = vnext.cross(vprev)
# Might be zero, then all kinds of fallback
if try_z.length() > EPSILON:
if z is not None and try_z.dot(z) < 0:
try_z = -try_z
z = try_z
elif not z: # No z, and no previous z.
# Look ahead, see if there's at least one point where
# spines are not collinear.
z = findFirstAngleNormal()
elif i == 0: # And non-crossed
snext = spine[i + 1]
y = snext - spt
z = findFirstAngleNormal()
else: # last point and not crossed
sprev = spine[i - 1]
y = spt - sprev
# If there's more than one point in the spine, z is already set.
# One point in the spline is an error anyway.
z = z.normalized()
y = y.normalized()
x = y.cross(z) # Already normalized
m = numpy.array(((x.x, y.x, z.x), (x.y, y.y, z.y), (x.z, y.z, z.z)))
# Columns are the unit vectors for the xz plane for the cross-section
if orient:
mrot = orient[i] if len(orient) > 1 else orient[0]
if not mrot is None:
m = m.dot(mrot) # Tested against X3DOM, the result matches, still not sure :(
if scale:
mscale = scale[i] if len(scale) > 1 else scale[0]
if not mscale is None:
m = m.dot(mscale)
# First the cross-section 2-vector is scaled,
# then rotated (which may make it a 3-vector),
# then applied to the xz plane unit vectors
sptv3 = numpy.array(spt.getData()[:3])
for cpt in cross:
v = sptv3 + m.dot(cpt)
self.addVertex(*v)
if begin_cap:
self.addFace([x for x in range(nc - 1, -1, -1)], ccw)
# Order of edges in the face: forward along cross, forward along spine,
# backward along cross, backward along spine, flipped if now ccw.
# This order is assumed later in the texture coordinate assignment;
# please don't change without syncing.
for s in range(ns - 1):
for c in range(ncf):
self.addQuadFlip(s * nc + c, s * nc + (c + 1) % nc,
(s + 1) * nc + (c + 1) % nc, (s + 1) * nc + c, ccw)
if spine_closed:
# The faces between the last and the first spine points
b = (ns - 1) * nc
for c in range(ncf):
self.addQuadFlip(b + c, b + (c + 1) % nc,
(c + 1) % nc, c, ccw)
if end_cap:
self.addFace([(ns - 1) * nc + x for x in range(0, nc)], ccw)
# Triangle meshes
# Helper for numerous nodes with a Coordinate subnode holding vertices
# That all triangle meshes and IndexedFaceSet
# num_faces can be a function, in case the face count is a function of vertex count
def startCoordMesh(self, node, num_faces):
ccw = readBoolean(node, "ccw", True)
self.readVertices(node) # This will allocate and fill the vertex array
if hasattr(num_faces, "__call__"):
num_faces = num_faces(self.getVertexCount())
self.reserveFaceCount(num_faces)
return ccw
def processGeometryIndexedTriangleSet(self, node):
index = readIntArray(node, "index", [])
num_faces = len(index) // 3
ccw = int(self.startCoordMesh(node, num_faces))
for i in range(0, num_faces*3, 3):
self.addTri(index[i + 1 - ccw], index[i + ccw], index[i+2])
def processGeometryIndexedTriangleStripSet(self, node):
strips = readIndex(node, "index")
ccw = int(self.startCoordMesh(node, sum([len(strip) - 2 for strip in strips])))
for strip in strips:
sccw = ccw # Running CCW value, reset for each strip
for i in range(len(strip) - 2):
self.addTri(strip[i + 1 - sccw], strip[i + sccw], strip[i+2])
sccw = 1 - sccw
def processGeometryIndexedTriangleFanSet(self, node):
fans = readIndex(node, "index")
ccw = int(self.startCoordMesh(node, sum([len(fan) - 2 for fan in fans])))
for fan in fans:
for i in range(1, len(fan) - 1):
self.addTri(fan[0], fan[i + 1 - ccw], fan[i + ccw])
def processGeometryTriangleSet(self, node):
ccw = int(self.startCoordMesh(node, lambda num_vert: num_vert // 3))
for i in range(0, self.getVertexCount(), 3):
self.addTri(i + 1 - ccw, i + ccw, i+2)
def processGeometryTriangleStripSet(self, node):
strips = readIntArray(node, "stripCount", [])
ccw = int(self.startCoordMesh(node, sum([n-2 for n in strips])))
vb = 0
for n in strips:
sccw = ccw
for i in range(n-2):
self.addTri(vb + i + 1 - sccw, vb + i + sccw, vb + i + 2)
sccw = 1 - sccw
vb += n
def processGeometryTriangleFanSet(self, node):
fans = readIntArray(node, "fanCount", [])
ccw = int(self.startCoordMesh(node, sum([n-2 for n in fans])))
vb = 0
for n in fans:
for i in range(1, n-1):
self.addTri(vb, vb + i + 1 - ccw, vb + i + ccw)
vb += n
# Quad geometries from the CAD module, might be relevant for printing
def processGeometryQuadSet(self, node):
ccw = self.startCoordMesh(node, lambda num_vert: 2*(num_vert // 4))
for i in range(0, self.getVertexCount(), 4):
self.addQuadFlip(i, i+1, i+2, i+3, ccw)
def processGeometryIndexedQuadSet(self, node):
index = readIntArray(node, "index", [])
num_quads = len(index) // 4
ccw = self.startCoordMesh(node, num_quads*2)
for i in range(0, num_quads*4, 4):
self.addQuadFlip(index[i], index[i+1], index[i+2], index[i+3], ccw)
# 2D polygon geometries
# Won't work for now, since Cura expects every mesh to have a nontrivial convex hull
# The only way around that is merging meshes.
def processGeometryDisk2D(self, node):
innerRadius = readFloat(node, "innerRadius", 0)
outerRadius = readFloat(node, "outerRadius", 1)
n = readInt(node, "subdivision", DEFAULT_SUBDIV)
angle = 2 * pi / n
self.reserveFaceAndVertexCount(n*4 if innerRadius else n-2, n*2 if innerRadius else n)
for i in range(n):
s = sin(angle * i)
c = cos(angle * i)
self.addVertex(outerRadius*c, outerRadius*s, 0)
if innerRadius:
self.addVertex(innerRadius*c, innerRadius*s, 0)
ni = (i+1) % n
self.addQuad(2*i, 2*ni, 2*ni+1, 2*i+1)
if not innerRadius:
for i in range(2, n):
self.addTri(0, i-1, i)
def processGeometryRectangle2D(self, node):
(x, y) = readFloatArray(node, "size", (2, 2))
self.reserveFaceAndVertexCount(2, 4)
self.addVertex(-x/2, -y/2, 0)
self.addVertex(x/2, -y/2, 0)
self.addVertex(x/2, y/2, 0)
self.addVertex(-x/2, y/2, 0)
self.addQuad(0, 1, 2, 3)
def processGeometryTriangleSet2D(self, node):
verts = readFloatArray(node, "vertices", ())
num_faces = len(verts) // 6
verts = [(verts[i], verts[i+1], 0) for i in range(0, 6 * num_faces, 2)]
self.reserveFaceAndVertexCount(num_faces, num_faces * 3)
for vert in verts:
self.addVertex(*vert)
# The front face is on the +Z side, so CCW is a variable
for i in range(0, num_faces*3, 3):
a = Vector(*verts[i+2]) - Vector(*verts[i])
b = Vector(*verts[i+1]) - Vector(*verts[i])
self.addTriFlip(i, i+1, i+2, a.x*b.y > a.y*b.x)
# General purpose polygon mesh
def processGeometryIndexedFaceSet(self, node):
faces = readIndex(node, "coordIndex")
ccw = self.startCoordMesh(node, sum([len(face) - 2 for face in faces]))
for face in faces:
if len(face) == 3:
self.addTriFlip(face[0], face[1], face[2], ccw)
elif len(face) > 3:
self.addFace(face, ccw)
geometry_importers = {
"IndexedFaceSet": processGeometryIndexedFaceSet,
"IndexedTriangleSet": processGeometryIndexedTriangleSet,
"IndexedTriangleStripSet": processGeometryIndexedTriangleStripSet,
"IndexedTriangleFanSet": processGeometryIndexedTriangleFanSet,
"TriangleSet": processGeometryTriangleSet,
"TriangleStripSet": processGeometryTriangleStripSet,
"TriangleFanSet": processGeometryTriangleFanSet,
"QuadSet": processGeometryQuadSet,
"IndexedQuadSet": processGeometryIndexedQuadSet,
"TriangleSet2D": processGeometryTriangleSet2D,
"Rectangle2D": processGeometryRectangle2D,
"Disk2D": processGeometryDisk2D,
"ElevationGrid": processGeometryElevationGrid,
"Extrusion": processGeometryExtrusion,
"Sphere": processGeometrySphere,
"Box": processGeometryBox,
"Cylinder": processGeometryCylinder,
"Cone": processGeometryCone
}
# Parses the Coordinate.@point field, fills the verts array.
def readVertices(self, node):
for c in node:
if c.tag == "Coordinate":
c = self.resolveDefUse(c)
if not c is None:
pt = c.attrib.get("point")
if pt:
# allow the list of float values in 'point' attribute to
# be separated by commas or whitespace as per spec of
# XML encoding of X3D
# Ref ISO/IEC 19776-1:2015 : Section 5.1.2
co = [float(x) for vec in pt.split(',') for x in vec.split()]
num_verts = len(co) // 3
self.verts = numpy.empty((4, num_verts), dtype=numpy.float32)
self.verts[3,:] = numpy.ones((num_verts), dtype=numpy.float32)
# Group by three
for i in range(num_verts):
self.verts[:3,i] = co[3*i:3*i+3]
# Mesh builder helpers
def reserveFaceAndVertexCount(self, num_faces, num_verts):
# Unlike the Cura MeshBuilder, we use 4-vectors stored as columns for easier transform
self.verts = numpy.zeros((4, num_verts), dtype=numpy.float32)
self.verts[3,:] = numpy.ones((num_verts), dtype=numpy.float32)
self.num_verts = 0
self.reserveFaceCount(num_faces)
def reserveFaceCount(self, num_faces):
self.faces = numpy.zeros((num_faces, 3), dtype=numpy.int32)
self.num_faces = 0
def getVertexCount(self):
return self.verts.shape[1]
def addVertex(self, x, y, z):
self.verts[0, self.num_verts] = x
self.verts[1, self.num_verts] = y
self.verts[2, self.num_verts] = z
self.num_verts += 1
# Indices are 0-based for this shape, but they won't be zero-based in the merged mesh
def addTri(self, a, b, c):
self.faces[self.num_faces, 0] = self.index_base + a
self.faces[self.num_faces, 1] = self.index_base + b
self.faces[self.num_faces, 2] = self.index_base + c
self.num_faces += 1
def addTriFlip(self, a, b, c, ccw):
if ccw:
self.addTri(a, b, c)
else:
self.addTri(b, a, c)
# Needs to be convex, but not necessaily planar
# Assumed ccw, cut along the ac diagonal
def addQuad(self, a, b, c, d):
self.addTri(a, b, c)
self.addTri(c, d, a)
def addQuadFlip(self, a, b, c, d, ccw):
if ccw:
self.addTri(a, b, c)
self.addTri(c, d, a)
else:
self.addTri(a, c, b)
self.addTri(c, a, d)
# Arbitrary polygon triangulation.
# Doesn't assume convexity and doesn't check the "convex" flag in the file.
# Works by the "cutting of ears" algorithm:
# - Find an outer vertex with the smallest angle and no vertices inside its adjacent triangle
# - Remove the triangle at that vertex
# - Repeat until done
# Vertex coordinates are supposed to be already set
def addFace(self, indices, ccw):
# Resolve indices to coordinates for faster math
face = [Vector(data=self.verts[0:3, i]) for i in indices]
# Need a normal to the plane so that we can know which vertices form inner angles
normal = findOuterNormal(face)
if not normal: # Couldn't find an outer edge, non-planar polygon maybe?
return
# Find the vertex with the smallest inner angle and no points inside, cut off. Repeat until done
n = len(face)
vi = [i for i in range(n)] # We'll be using this to kick vertices from the face
while n > 3:
max_cos = EPSILON # We don't want to check anything on Pi angles
i_min = 0 # max cos corresponds to min angle
for i in range(n):
inext = (i + 1) % n
iprev = (i + n - 1) % n
v = face[vi[i]]
next = face[vi[inext]] - v
prev = face[vi[iprev]] - v
nextXprev = next.cross(prev)
if nextXprev.dot(normal) > EPSILON: # If it's an inner angle
cos = next.dot(prev) / (next.length() * prev.length())
if cos > max_cos:
# Check if there are vertices inside the triangle
no_points_inside = True
for j in range(n):
if j != i and j != iprev and j != inext:
vx = face[vi[j]] - v
if pointInsideTriangle(vx, next, prev, nextXprev):
no_points_inside = False
break
if no_points_inside:
max_cos = cos
i_min = i
self.addTriFlip(indices[vi[(i_min + n - 1) % n]], indices[vi[i_min]], indices[vi[(i_min + 1) % n]], ccw)
vi.pop(i_min)
n -= 1
self.addTriFlip(indices[vi[0]], indices[vi[1]], indices[vi[2]], ccw)
# ------------------------------------------------------------
# X3D field parsers
# ------------------------------------------------------------
def readFloatArray(node, attr, default):
s = node.attrib.get(attr)
if not s:
return default
return [float(x) for x in s.split()]
def readIntArray(node, attr, default):
s = node.attrib.get(attr)
if not s:
return default
return [int(x, 0) for x in s.split()]
def readFloat(node, attr, default):
s = node.attrib.get(attr)
if not s:
return default
return float(s)
def readInt(node, attr, default):
s = node.attrib.get(attr)
if not s:
return default
return int(s, 0)
def readBoolean(node, attr, default):
s = node.attrib.get(attr)
if not s:
return default
return s.lower() == "true"
def readVector(node, attr, default):
v = readFloatArray(node, attr, default)
return Vector(v[0], v[1], v[2])
def readRotation(node, attr, default):
v = readFloatArray(node, attr, default)
return (v[3], Vector(v[0], v[1], v[2]))
# Returns the -1-separated runs
def readIndex(node, attr):
v = readIntArray(node, attr, [])
chunks = []
chunk = []
for i in range(len(v)):
if v[i] == -1:
if chunk:
chunks.append(chunk)
chunk = []
else:
chunk.append(v[i])
if chunk:
chunks.append(chunk)
return chunks
# Given a face as a sequence of vectors, returns a normal to the polygon place that forms a right triple
# with a vector along the polygon sequence and a vector backwards
def findOuterNormal(face):
n = len(face)
for i in range(n):
for j in range(i+1, n):
edge = face[j] - face[i]
if edge.length() > EPSILON:
edge = edge.normalized()
prev_rejection = Vector()
is_outer = True
for k in range(n):
if k != i and k != j:
pt = face[k] - face[i]
pte = pt.dot(edge)
rejection = pt - edge*pte
if rejection.dot(prev_rejection) < -EPSILON: # points on both sides of the edge - not an outer one
is_outer = False
break
elif rejection.length() > prev_rejection.length(): # Pick a greater rejection for numeric stability
prev_rejection = rejection
if is_outer: # Found an outer edge, prev_rejection is the rejection inside the face. Generate a normal.
return edge.cross(prev_rejection)
return False
# Given two *collinear* vectors a and b, returns the coefficient that takes b to a.
# No error handling.
# For stability, taking the ration between the biggest coordinates would be better...
def ratio(a, b):
if b.x > EPSILON or b.x < -EPSILON:
return a.x / b.x
elif b.y > EPSILON or b.y < -EPSILON:
return a.y / b.y
else:
return a.z / b.z
def pointInsideTriangle(vx, next, prev, nextXprev):
vxXprev = vx.cross(prev)
r = ratio(vxXprev, nextXprev)
if r < 0:
return False
vxXnext = vx.cross(next)
s = -ratio(vxXnext, nextXprev)
return s > 0 and (s + r) < 1
|