1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
|
#!/usr/bin/env python3
# Copyright (c) 2020 Ultimaker B.V.
# Cura is released under the terms of the LGPLv3 or higher.
import copy
import math
import os
import sys
from typing import Dict, List, Optional, Tuple
# ====================================
# Constants and Default Values
# ====================================
DEFAULT_BUFFER_FILLING_RATE_IN_C_PER_S = 50.0 # The buffer filling rate in #commands/s
DEFAULT_BUFFER_SIZE = 15 # The buffer size in #commands
MINIMUM_PLANNER_SPEED = 0.05
#Setting values for Ultimaker S5.
MACHINE_MAX_FEEDRATE_X = 300
MACHINE_MAX_FEEDRATE_Y = 300
MACHINE_MAX_FEEDRATE_Z = 40
MACHINE_MAX_FEEDRATE_E = 45
MACHINE_MAX_ACCELERATION_X = 9000
MACHINE_MAX_ACCELERATION_Y = 9000
MACHINE_MAX_ACCELERATION_Z = 100
MACHINE_MAX_ACCELERATION_E = 10000
MACHINE_MAX_JERK_XY = 20
MACHINE_MAX_JERK_Z = 0.4
MACHINE_MAX_JERK_E = 5
MACHINE_MINIMUM_FEEDRATE = 0.001
MACHINE_ACCELERATION = 3000
def get_code_and_num(gcode_line: str) -> Tuple[str, str]:
"""Gets the code and number from the given g-code line."""
gcode_line = gcode_line.strip()
cmd_code = gcode_line[0].upper()
cmd_num = str(gcode_line[1:])
return cmd_code, cmd_num
def get_value_dict(parts: List[str]) -> Dict[str, str]:
"""Fetches arguments such as X1 Y2 Z3 from the given part list and returns a dict"""
value_dict = {}
for p in parts:
p = p.strip()
if not p:
continue
code, num = get_code_and_num(p)
value_dict[code] = num
return value_dict
# ============================
# Math Functions - Begin
# ============================
def calc_distance(pos1, pos2):
delta = {k: pos1[k] - pos2[k] for k in pos1}
distance = 0
for value in delta.values():
distance += value ** 2
distance = math.sqrt(distance)
return distance
def calc_acceleration_distance(init_speed: float, target_speed: float, acceleration: float) -> float:
"""Given the initial speed, the target speed, and the acceleration
calculate the distance that's needed for the acceleration to finish.
"""
if acceleration == 0:
return 0.0
return (target_speed ** 2 - init_speed ** 2) / (2 * acceleration)
def calc_acceleration_time_from_distance(initial_feedrate: float, distance: float, acceleration: float) -> float:
"""Gives the time it needs to accelerate from an initial speed to reach a final distance."""
discriminant = initial_feedrate ** 2 - 2 * acceleration * -distance
#If the discriminant is negative, we're moving in the wrong direction.
#Making the discriminant 0 then gives the extremum of the parabola instead of the intersection.
discriminant = max(0, discriminant)
return (-initial_feedrate + math.sqrt(discriminant)) / acceleration
def calc_intersection_distance(initial_feedrate: float, final_feedrate: float, acceleration: float, distance: float) -> float:
"""Calculates the point at which you must start braking.
This gives the distance from the start of a line at which you must start
decelerating (at a rate of `-acceleration`) if you started at speed
`initial_feedrate` and accelerated until this point and want to end at the
`final_feedrate` after a total travel of `distance`. This can be used to
compute the intersection point between acceleration and deceleration in the
cases where the trapezoid has no plateau (i.e. never reaches maximum speed).
"""
if acceleration == 0:
return 0
return (2 * acceleration * distance - initial_feedrate * initial_feedrate + final_feedrate * final_feedrate) / (4 * acceleration)
def calc_max_allowable_speed(acceleration: float, target_velocity: float, distance: float) -> float:
"""Calculates the maximum speed that is allowed at this point when you must be
able to reach target_velocity using the acceleration within the allotted
distance.
"""
return math.sqrt(target_velocity * target_velocity - 2 * acceleration * distance)
class Command:
def __init__(self, cmd_str: str) -> None:
self._cmd_str = cmd_str # type: str
self.estimated_exec_time = 0.0 # type: float
self._cmd_process_function_map = {
"G": self._handle_g,
"M": self._handle_m,
"T": self._handle_t,
}
self._is_comment = False # type: bool
self._is_empty = False # type: bool
#Fields taken from CuraEngine's implementation.
self._recalculate = False
self._accelerate_until = 0
self._decelerate_after = 0
self._initial_feedrate = 0
self._final_feedrate = 0
self._entry_speed = 0
self._max_entry_speed =0
self._nominal_length = False
self._nominal_feedrate = 0
self._max_travel = 0
self._distance = 0
self._acceleration = 0
self._delta = [0, 0, 0]
self._abs_delta = [0, 0, 0]
def calculate_trapezoid(self, entry_factor, exit_factor):
"""Calculate the velocity-time trapezoid function for this move.
Each move has a three-part function mapping time to velocity.
"""
initial_feedrate = self._nominal_feedrate * entry_factor
final_feedrate = self._nominal_feedrate * exit_factor
#How far are we accelerating and how far are we decelerating?
accelerate_distance = calc_acceleration_distance(initial_feedrate, self._nominal_feedrate, self._acceleration)
decelerate_distance = calc_acceleration_distance(self._nominal_feedrate, final_feedrate, -self._acceleration)
plateau_distance = self._distance - accelerate_distance - decelerate_distance #And how far in between at max speed?
#Is the plateau negative size? That means no cruising, and we'll have to
#use intersection_distance to calculate when to abort acceleration and
#start braking in order to reach the final_rate exactly at the end of
#this command.
if plateau_distance < 0:
accelerate_distance = calc_intersection_distance(initial_feedrate, final_feedrate, self._acceleration, self._distance)
accelerate_distance = max(accelerate_distance, 0) #Due to rounding errors.
accelerate_distance = min(accelerate_distance, self._distance)
plateau_distance = 0
self._accelerate_until = accelerate_distance
self._decelerate_after = accelerate_distance + plateau_distance
self._initial_feedrate = initial_feedrate
self._final_feedrate = final_feedrate
@property
def is_command(self) -> bool:
return not self._is_comment and not self._is_empty
def __str__(self) -> str:
if self._is_comment or self._is_empty:
return self._cmd_str
info = "t=%s" % (self.estimated_exec_time)
return self._cmd_str.strip() + " ; --- " + info + os.linesep
def parse(self) -> None:
"""Estimates the execution time of this command and calculates the state after this command is executed."""
line = self._cmd_str.strip()
if not line:
self._is_empty = True
return
if line.startswith(";"):
self._is_comment = True
return
# Remove comment
line = line.split(";", 1)[0].strip()
parts = line.split(" ")
cmd_code, cmd_num = get_code_and_num(parts[0])
cmd_num = int(cmd_num)
func = self._cmd_process_function_map.get(cmd_code)
if func is None:
print("!!! no handle function for command type [%s]" % cmd_code)
return
func(cmd_num, parts)
def _handle_g(self, cmd_num: int, parts: List[str]) -> None:
self.estimated_exec_time = 0.0
# G10: Retract. Make this behave as if it's a retraction of 25mm.
if cmd_num == 10:
#TODO: If already retracted, this shouldn't add anything to the time.
cmd_num = 1
parts = ["G1", "E" + str(buf.current_position[3] - 25)]
# G11: Unretract. Make this behave as if it's an unretraction of 25mm.
elif cmd_num == 11:
#TODO: If already unretracted, this shouldn't add anything to the time.
cmd_num = 1
parts = ["G1", "E" + str(buf.current_position[3] + 25)]
# G0 and G1: Move
if cmd_num in (0, 1):
# Move
if len(parts) > 0:
value_dict = get_value_dict(parts[1:])
new_position = copy.deepcopy(buf.current_position)
new_position[0] = float(value_dict.get("X", new_position[0]))
new_position[1] = float(value_dict.get("Y", new_position[1]))
new_position[2] = float(value_dict.get("Z", new_position[2]))
new_position[3] = float(value_dict.get("E", new_position[3]))
buf.current_feedrate = float(value_dict.get("F", buf.current_feedrate * 60.0)) / 60.0
if buf.current_feedrate < MACHINE_MINIMUM_FEEDRATE:
buf.current_feedrate = MACHINE_MINIMUM_FEEDRATE
self._delta = [
new_position[0] - buf.current_position[0],
new_position[1] - buf.current_position[1],
new_position[2] - buf.current_position[2],
new_position[3] - buf.current_position[3]
]
self._abs_delta = [abs(x) for x in self._delta]
self._max_travel = max(self._abs_delta)
if self._max_travel > 0:
self._nominal_feedrate = buf.current_feedrate
self._distance = math.sqrt(self._abs_delta[0] ** 2 + self._abs_delta[1] ** 2 + self._abs_delta[2] ** 2)
if self._distance == 0:
self._distance = self._abs_delta[3]
current_feedrate = [d * self._nominal_feedrate / self._distance for d in self._delta]
current_abs_feedrate = [abs(f) for f in current_feedrate]
feedrate_factor = min(1.0, MACHINE_MAX_FEEDRATE_X)
feedrate_factor = min(feedrate_factor, MACHINE_MAX_FEEDRATE_Y)
feedrate_factor = min(feedrate_factor, buf.max_z_feedrate)
feedrate_factor = min(feedrate_factor, MACHINE_MAX_FEEDRATE_E)
#TODO: XY_FREQUENCY_LIMIT
current_feedrate = [f * feedrate_factor for f in current_feedrate]
current_abs_feedrate = [f * feedrate_factor for f in current_abs_feedrate]
self._nominal_feedrate *= feedrate_factor
self._acceleration = MACHINE_ACCELERATION
max_accelerations = [MACHINE_MAX_ACCELERATION_X, MACHINE_MAX_ACCELERATION_Y, MACHINE_MAX_ACCELERATION_Z, MACHINE_MAX_ACCELERATION_E]
for n in range(len(max_accelerations)):
if self._acceleration * self._abs_delta[n] / self._distance > max_accelerations[n]:
self._acceleration = max_accelerations[n]
vmax_junction = MACHINE_MAX_JERK_XY / 2
vmax_junction_factor = 1.0
if current_abs_feedrate[2] > buf.max_z_jerk / 2:
vmax_junction = min(vmax_junction, buf.max_z_jerk)
if current_abs_feedrate[3] > buf.max_e_jerk / 2:
vmax_junction = min(vmax_junction, buf.max_e_jerk)
vmax_junction = min(vmax_junction, self._nominal_feedrate)
safe_speed = vmax_junction
if buf.previous_nominal_feedrate > 0.0001:
xy_jerk = math.sqrt((current_feedrate[0] - buf.previous_feedrate[0]) ** 2 + (current_feedrate[1] - buf.previous_feedrate[1]) ** 2)
vmax_junction = self._nominal_feedrate
if xy_jerk > MACHINE_MAX_JERK_XY:
vmax_junction_factor = MACHINE_MAX_JERK_XY / xy_jerk
if abs(current_feedrate[2] - buf.previous_feedrate[2]) > MACHINE_MAX_JERK_Z:
vmax_junction_factor = min(vmax_junction_factor, (MACHINE_MAX_JERK_Z / abs(current_feedrate[2] - buf.previous_feedrate[2])))
if abs(current_feedrate[3] - buf.previous_feedrate[3]) > MACHINE_MAX_JERK_E:
vmax_junction_factor = min(vmax_junction_factor, (MACHINE_MAX_JERK_E / abs(current_feedrate[3] - buf.previous_feedrate[3])))
vmax_junction = min(buf.previous_nominal_feedrate, vmax_junction * vmax_junction_factor) #Limit speed to max previous speed.
self._max_entry_speed = vmax_junction
v_allowable = calc_max_allowable_speed(-self._acceleration, MINIMUM_PLANNER_SPEED, self._distance)
self._entry_speed = min(vmax_junction, v_allowable)
self._nominal_length = self._nominal_feedrate <= v_allowable
self._recalculate = True
buf.previous_feedrate = current_feedrate
buf.previous_nominal_feedrate = self._nominal_feedrate
buf.current_position = new_position
self.calculate_trapezoid(self._entry_speed / self._nominal_feedrate, safe_speed / self._nominal_feedrate)
self.estimated_exec_time = -1 #Signal that we need to include this in our second pass.
# G4: Dwell, pause the machine for a period of time.
elif cmd_num == 4:
# Pnnn is time to wait in milliseconds (P0 wait until all previous moves are finished)
cmd, num = get_code_and_num(parts[1])
num = float(num)
if cmd == "P":
if num > 0:
self.estimated_exec_time = num
def _handle_m(self, cmd_num: int, parts: List[str]) -> None:
self.estimated_exec_time = 0.0
# M203: Set maximum feedrate. Only Z is supported. Assume 0 execution time.
if cmd_num == 203:
value_dict = get_value_dict(parts[1:])
buf.max_z_feedrate = value_dict.get("Z", buf.max_z_feedrate)
# M204: Set default acceleration. Assume 0 execution time.
if cmd_num == 204:
value_dict = get_value_dict(parts[1:])
buf.acceleration = value_dict.get("S", buf.acceleration)
# M205: Advanced settings, we only set jerks for Griffin. Assume 0 execution time.
if cmd_num == 205:
value_dict = get_value_dict(parts[1:])
buf.max_xy_jerk = value_dict.get("XY", buf.max_xy_jerk)
buf.max_z_jerk = value_dict.get("Z", buf.max_z_jerk)
buf.max_e_jerk = value_dict.get("E", buf.max_e_jerk)
def _handle_t(self, cmd_num: int, parts: List[str]) -> None:
# Tn: Switching extruder. Assume 0 seconds. Actually more like 2.
self.estimated_exec_time = 0.0
class CommandBuffer:
def __init__(self, all_lines: List[str],
buffer_filling_rate: float = DEFAULT_BUFFER_FILLING_RATE_IN_C_PER_S,
buffer_size: int = DEFAULT_BUFFER_SIZE
) -> None:
self._all_lines = all_lines
self._all_commands = list()
self._buffer_filling_rate = buffer_filling_rate # type: float
self._buffer_size = buffer_size # type: int
self.acceleration = 3000
self.current_position = [0, 0, 0, 0]
self.current_feedrate = 0
self.max_xy_jerk = MACHINE_MAX_JERK_XY
self.max_z_jerk = MACHINE_MAX_JERK_Z
self.max_e_jerk = MACHINE_MAX_JERK_E
self.max_z_feedrate = MACHINE_MAX_FEEDRATE_Z
# If the buffer can depletes less than this amount time, it can be filled up in time.
lower_bound_buffer_depletion_time = self._buffer_size / self._buffer_filling_rate # type: float
self._detection_time_frame = lower_bound_buffer_depletion_time
self._code_count_limit = self._buffer_size
self.total_time = 0.0
self.previous_feedrate = [0, 0, 0, 0]
self.previous_nominal_feedrate = 0
print("Command speed: %s" % buffer_filling_rate)
print("Code Limit: %s" % self._code_count_limit)
self._bad_frame_ranges = []
def process(self) -> None:
buf.total_time = 0.0
cmd0_idx = 0
total_frame_time = 0.0
cmd_count = 0
for idx, line in enumerate(self._all_lines):
cmd = Command(line)
cmd.parse()
if not cmd.is_command:
continue
self._all_commands.append(cmd)
#Second pass: Reverse kernel.
kernel_commands = [None, None, None]
for cmd in reversed(self._all_commands):
if cmd.estimated_exec_time >= 0:
continue #Not a movement command.
kernel_commands[2] = kernel_commands[1]
kernel_commands[1] = kernel_commands[0]
kernel_commands[0] = cmd
self.reverse_pass_kernel(kernel_commands[0], kernel_commands[1], kernel_commands[2])
#Third pass: Forward kernel.
kernel_commands = [None, None, None]
for cmd in self._all_commands:
if cmd.estimated_exec_time >= 0:
continue #Not a movement command.
kernel_commands[0] = kernel_commands[1]
kernel_commands[1] = kernel_commands[2]
kernel_commands[2] = cmd
self.forward_pass_kernel(kernel_commands[0], kernel_commands[1], kernel_commands[2])
self.forward_pass_kernel(kernel_commands[1], kernel_commands[2], None)
#Fourth pass: Recalculate the commands that have _recalculate set.
previous = None
current = None
for current in self._all_commands:
if current.estimated_exec_time >= 0:
current = None
continue #Not a movement command.
if previous:
#Recalculate if current command entry or exit junction speed has changed.
if previous._recalculate or current._recalculate:
#Note: Entry and exit factors always >0 by all previous logic operators.
previous.calculate_trapezoid(previous._entry_speed / previous._nominal_feedrate, current._entry_speed / previous._nominal_feedrate)
previous._recalculate = False
previous = current
if current is not None and current.estimated_exec_time >= 0:
current.calculate_trapezoid(current._entry_speed / current._nominal_feedrate, MINIMUM_PLANNER_SPEED / current._nominal_feedrate)
current._recalculate = False
#Fifth pass: Compute time for movement commands.
for cmd in self._all_commands:
if cmd.estimated_exec_time >= 0:
continue #Not a movement command.
plateau_distance = cmd._decelerate_after - cmd._accelerate_until
cmd.estimated_exec_time = calc_acceleration_time_from_distance(cmd._initial_feedrate, cmd._accelerate_until, cmd._acceleration)
cmd.estimated_exec_time += plateau_distance / cmd._nominal_feedrate
cmd.estimated_exec_time += calc_acceleration_time_from_distance(cmd._final_feedrate, (cmd._distance - cmd._decelerate_after), cmd._acceleration)
for idx, cmd in enumerate(self._all_commands):
cmd_count += 1
if idx > cmd0_idx or idx == 0:
buf.total_time += cmd.estimated_exec_time
total_frame_time += cmd.estimated_exec_time
if total_frame_time > 1:
# Find the next starting command which makes the total execution time of the frame to be less than
# 1 second.
cmd0_idx += 1
total_frame_time -= self._all_commands[cmd0_idx].estimated_exec_time
cmd_count -= 1
while total_frame_time > 1:
cmd0_idx += 1
total_frame_time -= self._all_commands[cmd0_idx].estimated_exec_time
cmd_count -= 1
# If within the current time frame the code count exceeds the limit, record that.
if total_frame_time <= self._detection_time_frame and cmd_count > self._code_count_limit:
need_to_append = True
if self._bad_frame_ranges:
last_item = self._bad_frame_ranges[-1]
if last_item["start_line"] == cmd0_idx:
last_item["end_line"] = idx
last_item["cmd_count"] = cmd_count
last_item["time"] = total_frame_time
need_to_append = False
if need_to_append:
self._bad_frame_ranges.append({"start_line": cmd0_idx,
"end_line": idx,
"cmd_count": cmd_count,
"time": total_frame_time})
def reverse_pass_kernel(self, previous: Optional[Command], current: Optional[Command], next: Optional[Command]) -> None:
if not current or not next:
return
#If entry speed is already at the maximum entry speed, no need to
#recheck. The command is cruising. If not, the command is in state of
#acceleration or deceleration. Reset entry speed to maximum and check
#for maximum allowable speed reductions to ensure maximum possible
#planned speed.
if current._entry_speed != current._max_entry_speed:
#If nominal length is true, max junction speed is guaranteed to be
#reached. Only compute for max allowable speed if block is
#decelerating and nominal length is false.
if not current._nominal_length and current._max_entry_speed > next._max_entry_speed:
current._entry_speed = min(current._max_entry_speed, calc_max_allowable_speed(-current._acceleration, next._entry_speed, current._distance))
else:
current._entry_speed = current._max_entry_speed
current._recalculate = True
def forward_pass_kernel(self, previous: Optional[Command], current: Optional[Command], next: Optional[Command]) -> None:
if not previous:
return
#If the previous command is an acceleration command, but it is not long
#enough to complete the full speed change within the command, we need to
#adjust the entry speed accordingly. Entry speeds have already been
#reset, maximised and reverse planned by the reverse planner. If nominal
#length is set, max junction speed is guaranteed to be reached. No need
#to recheck.
if not previous._nominal_length:
if previous._entry_speed < current._entry_speed:
entry_speed = min(current._entry_speed, calc_max_allowable_speed(-previous._acceleration, previous._entry_speed, previous._distance))
if current._entry_speed != entry_speed:
current._entry_speed = entry_speed
current._recalculate = True
def to_file(self, file_name: str) -> None:
all_lines = [str(c) for c in self._all_commands]
with open(file_name, "w", encoding = "utf-8") as f:
f.writelines(all_lines)
f.write(";---TOTAL ESTIMATED TIME:" + str(self.total_time))
def report(self) -> None:
for item in self._bad_frame_ranges:
print("Potential buffer underrun from line {start_line} to {end_line}, code count = {code_count}, in {time}s ({speed} cmd/s)".format(
start_line = item["start_line"],
end_line = item["end_line"],
code_count = item["cmd_count"],
time = round(item["time"], 4),
speed = round(item["cmd_count"] / item["time"], 2)))
print("Total predicted number of buffer underruns:", len(self._bad_frame_ranges))
if __name__ == "__main__":
if len(sys.argv) < 2 or 3 < len(sys.argv):
print("Usage: <input g-code> [output g-code]")
sys.exit(1)
in_filename = sys.argv[1]
out_filename = None
if len(sys.argv) == 3:
out_filename = sys.argv[2]
with open(in_filename, "r", encoding = "utf-8") as f:
all_lines = f.readlines()
buf = CommandBuffer(all_lines)
buf.process()
# Output annotated gcode is optional
if out_filename is not None:
buf.to_file(out_filename)
buf.report()
|