1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
--- --------------------------------------------------------------------------
--- This module performs the actual partial evaluation of a given expression,
--- based on let-rewriting [PPDP'07].
--- The problem with the let-rewriting calculus is that it does not
--- * consider recursive let-expressions
--- * provide an operational semantics
---
--- @author Björn Peemöller
--- @version April 2015
--- --------------------------------------------------------------------------
module PeLetRW (pevalExpr) where
import Function (second)
import List (find, intersect, maximum)
import Maybe (fromJust)
import Pretty (pPrint)
import FlatCurry.Types
import FlatCurryGoodies
import FlatCurryPretty (ppExp)
import Normalization (freshRule)
import Output (traceDetail)
import PevalOpts (Options)
import State ( State, (>+=), (>+), (<$>), evalState, getS, getsS
, mapS, modifyS, returnS, putS)
import Subst (mkSubst, subst, singleSubst, varSubst)
pevalExpr :: Options -> Prog -> Expr -> Expr
pevalExpr opts (Prog _ _ _ fs _) e
= evalState (peval e) (PEState opts fs (maxVarIndex e) 1)
-- ---------------------------------------------------------------------------
-- Internal state
-- ---------------------------------------------------------------------------
--- Internal state of partial evaluation, containing
--- * the list of all defined function declarations,
--- used for unfolding (read-only).
--- * Renaming index for fresh variables.
--- * Number of already performed unfolding operations,
--- used for local termination.
data PEvalState = PEState Options [FuncDecl] Int Int
type PEM a = State PEvalState a
getOpts :: PEM Options
getOpts = getsS $ \ (PEState o _ _ _) -> o
lookupRule :: QName -> PEM (Maybe Rule)
lookupRule f
= getsS (\(PEState _ fs _ _) -> find (hasName f) fs) >+= \mbFunc ->
returnS $ case mbFunc of
Nothing -> Nothing
Just (Func _ _ _ _r) -> Just r
incrRenamingIndex :: Int -> PEM Int
incrRenamingIndex j
= getS >+= \(PEState o fs i d) -> putS (PEState o fs (i + j) d) >+ returnS i
incrDepth :: PEM ()
incrDepth = modifyS $ \(PEState o fs i d) -> PEState o fs i (d + 1)
-- local criteria if we can proceed unfolding a call in a given state
proceed :: PEM Bool
proceed = getsS $ \(PEState _ _ _ d) -> d < 1
orElse :: PEM a -> PEM a -> PEM a
orElse act alt = proceed >+= \should ->
if should then incrDepth >+ act else alt
traceM :: String -> PEM a -> PEM a
traceM msg x = getOpts >+= \opts -> traceDetail opts msg x
-- ---------------------------------------------------------------------------
-- Partial evaluation
-- ---------------------------------------------------------------------------
--- peval implements the non-standard meta-interpreter.
--- @param e - expression to partially evaluate
--- @return partially evaluated expression
peval :: Expr -> PEM Expr
peval x = traceM ("pe: " ++ pPrint (ppExp x)) (peval' x)
where
peval' v@(Var _) = returnS v -- (VAR)
peval' l@(Lit _) = returnS l -- (LIT)
peval' c@(Comb ct f es) = case getSQ c of
Just e -> peval e -- (SQ)
_ -> peComb ct f es -- (COMB)
peval' (Let ds e) = peLet ds e
peval' (Free vs e) = peFree vs e
peval' (Or e1 e2) = peOr e1 e2
peval' (Case ct e bs) = peCase ct e bs
peval' (Typed e ty) = flip Typed ty <$> peval e -- (TYPED)
--- partial evaluation of combination
peComb :: CombType -> QName -> [Expr] -> PEM Expr
peComb ct f es = splitArgs es >+= \(ds', es') ->
if null ds'
then case ct of
FuncCall -> peFuncCall f es -- (FUNC)
_ -> Comb ct f <$> mapS peval es -- (CONS, PARTC, PARTF)
else peval (Let ds' (Comb ct f es'))
splitArgs :: [Expr] -> PEM ([(VarIndex, Expr)], [Expr])
splitArgs [] = returnS ([], [])
splitArgs (e:es)
| isVar e = splitArgs es >+= \(ds', es') -> returnS (ds', e : es')
| otherwise = incrRenamingIndex 1 >+= \newVar ->
splitArgs es >+= \(ds', es') ->
returnS ((newVar, e) : ds', Var newVar : es')
--- partial evaluation of function application (Fapp).
peFuncCall :: QName -> [Expr] -> PEM Expr
peFuncCall f es
= lookupRule f >+= \mbRule -> case mbRule of
Nothing -> peBuiltin f es
Just r -> (unfold r es >+= peval)
`orElse` returnS (topSQ (Comb FuncCall f es))
--- unfolding of right-hand-side.
unfold :: Rule -> [Expr] -> PEM Expr
unfold r@(Rule _ e) es
= incrRenamingIndex (maxVarIndex e) >+= \renIndex ->
let Rule vs' e' = freshRule renIndex r
in returnS (subst (mkSubst vs' es) e')
unfold (External _) _ = error "PeLetRW.unfold: external"
--- partial evaluation of let expression.
peLet :: [(VarIndex, Expr)] -> Expr -> PEM Expr
peLet ds e = case e of
-- (LET-VAR)
Var v -> case lookup v ds of
Nothing -> returnS e
Just b -> peval (Let ds b)
`orElse` returnS (topSQ (Let ds e))
-- (LET-LIT)
Lit _ -> returnS e
-- (LET-CONS)
Comb ConsCall c es -> peval $ Comb ConsCall c (map (Let ds) es)
Comb FuncCall _ _
-- (LET-FAILED)
| e == failedExpr -> returnS failedExpr
-- (LET-EVAL-1)
| otherwise -> case getSQ e of
-- (LET-SQ)
Just e' -> peval (Let ds e')
_ -> letEval
-- (LET-PART)
Comb partcall q es -> peval $ Comb partcall q (map (Let ds) es)
-- (LET-EVAL-2)
Let ds' e' -> peval $ Let (ds ++ ds') e'
-- (LET-FREE)
Free vs e' ->
incrRenamingIndex (maxVar vs) >+= \renIndex ->
let vs' = map (+ renIndex) vs
in peval $ Free vs' (Let ds (varSubst vs vs' e'))
-- (LET-OR)
Or e1 e2 -> peval $ Or (Let ds e1) (Let ds e2)
-- (LET-CASE)
Case ct e' bs -> peCase ct e' bs -- peval (Case ct (Let ds e') (Let ds `onBranchExps` bs))
-- (LET-TYPED)
Typed e' ty -> peval (Typed (Let ds e') ty)
-- (CASE-FUNPAT)
where letEval = peval e >+= \e' ->
let let' = Let ds e' in
if e == e' then returnS let' else peval let'
--- partial evaluation of free variables (FREE).
--- If we could make some progress in evaluating the subject expression,
--- we strip unused free variables and proceed with partial evaluation.
peFree :: [VarIndex] -> Expr -> PEM Expr
peFree vs e = peval e >+= \e' ->
let vs' = vs `intersect` freeVars e'
free' = if null vs' then e' else Free vs' e' in
if e' /= e then peval free' else returnS free'
--- Partial evaluation of non-deterministic choice (OR).
peOr :: Expr -> Expr -> PEM Expr
peOr e1 e2
| e1 == failedExpr = peval e2
| e2 == failedExpr = peval e1
| otherwise = peval e1 >+= \e1' ->
if e1' /= e1
then peval (Or e1' e2)
else peval e2 >+= \e2' ->
if e2' /= e2
then peval (Or e1 e2')
else returnS (Or e1 e2)
--- Partial evaluation of case expressions.
peCase :: CaseType -> Expr -> [BranchExpr] -> PEM Expr
peCase ct subj bs = case subj of
-- (CASE-VAR)
Var v -> Case ct subj <$> mapS peBranch bs
where peBranch (Branch p be) = Branch p <$>
peval (subst (singleSubst v (pat2exp p)) be)
-- (CASE-LIT)
Lit l -> returnS $ matchLit bs
where
matchLit [] = failedExpr
matchLit (Branch (LPattern p) e : bes)
| p == l = e
| otherwise = matchLit bes
matchLit (Branch (Pattern _ _) _ : _)
= error "PartEval.peCase.matchLit: Constructor pattern"
-- (CASE-CONS)
Comb ConsCall c es -> peval (matchCons bs)
where
matchCons [] = failedExpr
matchCons (Branch (Pattern p vs) e : bes)
| p == c = subst (mkSubst vs es) e
| otherwise = matchCons bes
matchCons (Branch (LPattern _) _ : _)
= error "PartEval.peCase.matchCons: Literal pattern"
Comb FuncCall _ _
-- (CASE-FAILED)
| subj == failedExpr -> returnS failedExpr
-- (CASE-EVAL-1)
| otherwise -> case getSQ subj of
-- (CASE-SQ)
Just e -> peval (Case ct e bs)
_ -> caseEval
-- (CASE-ERROR)
Comb (ConsPartCall _ ) _ _ -> error "PeRLNT.peCase: ConsPartCall"
Comb (FuncPartCall _ ) _ _ -> error "PeRLNT.peCase: FuncPartCall"
-- (CASE-EVAL-2)
Let _ _ -> caseEval
-- (CASE-FREE)
Free vs e ->
incrRenamingIndex (maxVar vs) >+= \renIndex ->
let vs' = map (+ renIndex) vs
in peval $ Free vs' (Case ct (varSubst vs vs' e) bs)
-- (CASE-OR)
Or e1 e2 -> peval (Or (Case ct e1 bs) (Case ct e2 bs))
-- (CASE-CASE)
Case ct' e@(Var _) bs' -> peval (Case ct' e (subcase `onBranchExps` bs'))
where subcase be = Case ct be bs
-- (CASE-EVAL-3)
Case _ _ _ -> caseEval
-- (CASE-TYPED)
Typed e _ -> peval (Case ct e bs)
where caseEval = peval subj >+= \subj' ->
let case' = Case ct subj' bs in
if subj == subj' then returnS case' else peval case'
-- ---------------------------------------------------------------------------
-- Builtin functions
-- ---------------------------------------------------------------------------
--- partial evaluation of built-in functions
peBuiltin :: QName -> [Expr] -> PEM Expr
peBuiltin f es
| f == prelApply = peBuiltInApply f es
| f == prelCond = peBuiltInCond f es
| f == prelCond' = peBuiltInCond f es
| f == prelEq = peBuiltinEq f es
| f == prelUni = peBuiltinUni f es
| f == prelAmp = peBuiltinCAnd f es
| f `elem` arithOps = peBuiltinArith f es
| otherwise = returnS $ Comb FuncCall f es
where arithOps = [ prelTimes, prelPlus, prelMinus
, prelLt, prelGt, prelLeq, prelGeq]
-- higher order application
peBuiltInApply :: QName -> [Expr] -> PEM Expr
peBuiltInApply f es = case es of
[Comb ct@(ConsPartCall _) g es1, e2] -> peval $ addPartCallArg ct g es1 e2
[Comb ct@(FuncPartCall _) g es1, e2] -> peval $ addPartCallArg ct g es1 e2
[_ , _ ] -> peArgs f es [1]
_ -> error "PartEval.peBuiltInApply"
-- cond
peBuiltInCond :: QName -> [Expr] -> PEM Expr
peBuiltInCond f es = case es of
[c, e] | delSQ c == trueExpr -> peval e
| otherwise -> peArgs f es [1]
_ -> error "PartEval.peBuiltInCond"
-- Equality
peBuiltinEq :: QName -> [Expr] -> PEM Expr
peBuiltinEq f es = let es' = map delSQ es in case es' of
[Lit l1 , Lit l2 ] -> returnS $ mkBool (l1 == l2)
[Comb ConsCall c1 es1, Comb ConsCall c2 es2]
| c1 == c2 -> peval $ mkConjunction f prelAnd trueExpr es1 es2
| otherwise -> returnS falseExpr
[_, _]
| all (== trueExpr) es' -> returnS trueExpr
| any (== failedExpr) es' -> returnS failedExpr
| otherwise -> peArgs f es [1,2]
_ -> error "PartEval.peBuiltinEq"
-- Unification
peBuiltinUni :: QName -> [Expr] -> PEM Expr
peBuiltinUni f es = let es' = map delSQ es in case es' of
[Lit l1 , Lit l2 ]
| l1 == l2 -> returnS trueExpr
| otherwise -> returnS failedExpr
[Comb ConsCall c1 es1, Comb ConsCall c2 es2]
| c1 == c2 -> peval $ mkConjunction f prelAmp trueExpr es1 es2
| otherwise -> returnS failedExpr
[e1, e2]
| all (== trueExpr) es' -> returnS trueExpr
| any (== failedExpr) es' -> returnS failedExpr
| isVar e1 -> unifyVar False f [e1,e2]
| isVar e2 -> unifyVar True f [e2,e1]
| otherwise -> peArgs f es [1,2]
_ -> error "PartEval.peBuiltinUni"
unifyVar :: Bool -> QName -> [Expr] -> PEM Expr
unifyVar flip f es = case es of
[Var x, e] | dataExp e
-> peval $ peBuiltinEqvarAux x e
| flip
-> peArgs f rev [1,2]
| otherwise
-> peArgs f es [1,2]
_ -> error "PartEval.unifyVar"
where rev = reverse es
-- currently we only consider literals and constants.. TO DO..
dataExp :: Expr -> Bool
dataExp (Var _) = False
dataExp (Lit _) = True
dataExp c@(Comb ct qn es) = case getSQ c of
Just e -> dataExp e
_ -> null es && (ct == ConsCall || qn == prelFailed)
dataExp (Free _ _) = False
dataExp (Or _ _) = False
dataExp (Case _ _ _) = False
dataExp (Let _ _) = False
dataExp (Typed e _) = dataExp e
peBuiltinEqvarAux :: Int -> Expr -> Expr
peBuiltinEqvarAux x e = Case Flex (Var x) [subs2branches e]
where
subs2branches ex = case ex of
Lit c -> Branch (LPattern c) trueExpr
Comb ConsCall c [] -> Branch (Pattern c []) trueExpr
_ -> error "PartEval.peBuiltinEqvarAux.subs2branches"
--PENDING: extend function above to cover arbitrary data terms...
-- Concurrent conjunction
peBuiltinCAnd :: QName -> [Expr] -> PEM Expr
peBuiltinCAnd f es = case es of
[e1, e2] | e1' == trueExpr -> peval e2
| e2' == trueExpr -> peval e1
| e1' == failedExpr -> returnS failedExpr
| e2' == failedExpr -> returnS failedExpr
| otherwise -> peArgs f es [1,2]
where e1' = delSQ e1
e2' = delSQ e2
_ -> error "PartEval.peBuiltinCAnd"
-- arithmetics
--extend to floats and to more operators..
peBuiltinArith :: QName -> [Expr] -> PEM Expr
peBuiltinArith f es = case es of
[Lit (Intc i1), Lit (Intc i2)] -> returnS $ peArith i1 i2
[_,_] -> peArgs f es [1,2]
_ -> error "PartEval.peBuiltinArith"
where
peArith l1 l2
| f == prelTimes = Lit (Intc (l1 * l2))
| f == prelPlus = Lit (Intc (l1 + l2))
| f == prelMinus = Lit (Intc (l1 - l2))
| f == prelLt = mkBool (l1 < l2)
| f == prelGt = mkBool (l1 > l2)
| f == prelLeq = mkBool (l1 <= l2)
| f == prelGeq = mkBool (l1 >= l2)
-- Evaluate function arguments
peArgs :: QName -> [Expr] -> [Int] -> PEM Expr
peArgs f es is = case floatCase f [] zipped of
Just e' -> returnS $ topSQ e'
Nothing -> peEvalArgs f [] es
where zipped = zipWith (\i e -> (i `elem` is, e)) [1..] es
floatCase :: QName -> [Expr] -> [(Bool, Expr)] -> Maybe Expr
floatCase _ _ [] = Nothing
floatCase f les ((mayFloat, e) : ies) = case e of
Case ct1 v@(Var _) bs | mayFloat ->
Just $ Case ct1 v (subCase `onBranchExps` bs)
_ -> floatCase f (les ++ [e]) ies
where subCase be = Comb FuncCall f (les ++ be : map snd ies)
peEvalArgs :: QName -> [Expr] -> [Expr] -> PEM Expr
peEvalArgs f les [] = returnS $ Comb FuncCall f les
peEvalArgs f les (e:es) = peval e >+= \new ->
if e == new then peEvalArgs f (les ++ [e]) es
else returnS $ topSQ $ Comb FuncCall f (les ++ new : es)
-- ---------------------------------------------------------------------------
-- Constructing expressions
-- ---------------------------------------------------------------------------
mkConjunction :: QName -> QName -> Expr -> [Expr] -> [Expr] -> Expr
mkConjunction eq con def es1 es2
| null eqs = def
| otherwise = foldr1 (mkCall con) eqs
where
eqs = zipWith (mkCall eq) es1 es2
mkCall f e1 e2 = Comb FuncCall f [e1, e2]
mkBool :: Bool -> Expr
mkBool True = trueExpr
mkBool False = falseExpr
|