1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
|
// downconvert.cpp: implementation of the CDownConvert class.
//
// This class takes I/Q baseband data and performs tuning
//(Frequency shifting of the baseband signal) as well as
// decimation in powers of 2 after the shifting.
//
// History:
// 2010-09-15 Initial creation MSW
// 2011-03-27 Initial release
// 2011-04-20 Changed some scope resolution operators to allow compiling with different compilers
// 2013-02-01 Fixed issue with missing first coef of HB calculation
// 2013-07-28 Added single/double precision math macros
//////////////////////////////////////////////////////////////////////
//==========================================================================================
// + + + This Software is released under the "Simplified BSD License" + + +
//Copyright 2010 Moe Wheatley. All rights reserved.
//
//Redistribution and use in source and binary forms, with or without modification, are
//permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY Moe Wheatley ``AS IS'' AND ANY EXPRESS OR IMPLIED
//WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
//FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Moe Wheatley OR
//CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
//SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
//ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//The views and conclusions contained in the software and documentation are those of the
//authors and should not be interpreted as representing official policies, either expressed
//or implied, of Moe Wheatley.
//==========================================================================================
#include "dsp/downconvert.h"
#include "dsp/filtercoef.h"
#include "gui/testbench.h"
#include "interface/perform.h"
#include <QDebug>
//pick a method of calculating the NCO
#define NCO_LIB 0 //normal sin cos library (188nS)
#define NCO_OSC 1 //quadrature oscillator (25nS)
#define NCO_VCASM 0 //Visual C assembly call to floating point sin/cos instruction
#define NCO_GCCASM 0 //GCC assembly call to floating point sin/cos instruction (100nS)
#define MIN_OUTPUT_RATE (7900.0*2.0)
#define MAX_HALF_BAND_BUFSIZE 32768
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CDownConvert::CDownConvert()
{
int i;
m_NcoInc = 0.0;
m_NcoTime = 0.0;
m_NcoFreq = 0.0;
m_CW_Offset = 0.0;
m_InRate = 100000.0;
m_MaxBW = 10000.0;
for(i=0; i<MAX_DECSTAGES; i++)
m_pDecimatorPtrs[i] = NULL;
m_Osc1.re = 1.0; //initialize unit vector that will get rotated
m_Osc1.im = 0.0;
}
CDownConvert::~CDownConvert()
{
DeleteFilters();
}
//////////////////////////////////////////////////////////////////////
// Delete all active Filters in m_pDecimatorPtrs array
//////////////////////////////////////////////////////////////////////
void CDownConvert::DeleteFilters()
{
for(int i=0; i<MAX_DECSTAGES; i++)
{
if(m_pDecimatorPtrs[i])
{
delete m_pDecimatorPtrs[i];
m_pDecimatorPtrs[i] = NULL;
}
}
}
//////////////////////////////////////////////////////////////////////
// Sets NCO Frequency parameters
//////////////////////////////////////////////////////////////////////
void CDownConvert::SetFrequency(TYPEREAL NcoFreq)
{
TYPEREAL tmpf = NcoFreq + m_CW_Offset;
m_NcoFreq = tmpf;
m_NcoInc = K_2PI*m_NcoFreq/m_InRate;
m_OscCos = MCOS(m_NcoInc);
m_OscSin = MSIN(m_NcoInc);
//qDebug()<<"NCO "<<m_NcoFreq;
}
//////////////////////////////////////////////////////////////////////
// Calculates sequence and number of decimation stages based on
// input sample rate and desired output bandwidth. Returns final output rate
//from divide by 2 stages.
//////////////////////////////////////////////////////////////////////
TYPEREAL CDownConvert::SetDataRate(TYPEREAL InRate, TYPEREAL MaxBW)
{
int n = 0;
TYPEREAL f = InRate;
if( (m_InRate!=InRate) ||
(m_MaxBW!=MaxBW) )
{
m_InRate = InRate;
m_MaxBW = MaxBW;
m_Mutex.lock();
DeleteFilters();
//loop until closest output rate is found and list of pointers to decimate by 2 stages is generated
while( (f > (m_MaxBW / HB51TAP_MAX) ) && (f > MIN_OUTPUT_RATE) )
{
if(f >= (m_MaxBW / CIC3_MAX) ) //See if can use CIC order 3
m_pDecimatorPtrs[n++] =
new CCicN3DecimateBy2;
else if(f >= (m_MaxBW / HB11TAP_MAX) ) //See if can use fixed 11 Tap Halfband
m_pDecimatorPtrs[n++] =
new CHalfBand11TapDecimateBy2();
else if(f >= (m_MaxBW / HB15TAP_MAX) ) //See if can use Halfband 15 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2(HB15TAP_LENGTH, HB15TAP_H);
else if(f >= (m_MaxBW / HB19TAP_MAX) ) //See if can use Halfband 19 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2(HB19TAP_LENGTH, HB19TAP_H);
else if(f >= (m_MaxBW / HB23TAP_MAX) ) //See if can use Halfband 23 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2(HB23TAP_LENGTH, HB23TAP_H);
else if(f >= (m_MaxBW / HB27TAP_MAX) ) //See if can use Halfband 27 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2(HB27TAP_LENGTH, HB27TAP_H);
else if(f >= (m_MaxBW / HB31TAP_MAX) ) //See if can use Halfband 31 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2(HB31TAP_LENGTH, HB31TAP_H);
else if(f >= (m_MaxBW / HB35TAP_MAX) ) //See if can use Halfband 35 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2(HB35TAP_LENGTH, HB35TAP_H);
else if(f >= (m_MaxBW / HB39TAP_MAX) ) //See if can use Halfband 39 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2(HB39TAP_LENGTH, HB39TAP_H);
else if(f >= (m_MaxBW / HB43TAP_MAX) ) //See if can use Halfband 43 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2(HB43TAP_LENGTH, HB43TAP_H);
else if(f >= (m_MaxBW / HB47TAP_MAX) ) //See if can use Halfband 47 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2(HB47TAP_LENGTH, HB47TAP_H);
else if(f >= (m_MaxBW / HB51TAP_MAX) ) //See if can use Halfband 51 Tap
m_pDecimatorPtrs[n++] =
new CHalfBandDecimateBy2(HB51TAP_LENGTH, HB51TAP_H);
f /= 2.0;
}
m_Mutex.unlock();
m_OutputRate = f;
SetFrequency(m_NcoFreq);
qDebug()<<"Filters "<<n<< " Fin="<<InRate<<" BW="<<m_MaxBW<<" fout="<<m_OutputRate;
}
return m_OutputRate;
}
//////////////////////////////////////////////////////////////////////
// Calculates sequence and number of decimation stages for WBFM based on
// input sample rate and desired output bandwidth. Returns final output rate
//from divide by 2 stages.
//////////////////////////////////////////////////////////////////////
TYPEREAL CDownConvert::SetWfmDataRate(TYPEREAL InRate, TYPEREAL MaxBW)
{
int n = 0;
TYPEREAL f = InRate;
if( (m_InRate!=InRate) ||
(m_MaxBW!=MaxBW) )
{
m_InRate = InRate;
m_MaxBW = MaxBW;
m_Mutex.lock();
DeleteFilters();
//loop until closest output rate is found and list of pointers to decimate by 2 stages is generated
while( (f > 400000.0) )
{
m_pDecimatorPtrs[n++] = new CDownConvert::CHalfBandDecimateBy2(HB51TAP_LENGTH, HB51TAP_H);
f /= 2.0;
}
m_OutputRate = f;
m_Mutex.unlock();
SetFrequency(m_NcoFreq);
}
return m_OutputRate;
}
//////////////////////////////////////////////////////////////////////
// Processes 'InLength' I/Q samples of 'pInData' buffer
// and places in 'pOutData' buffer.
// Returns number of samples available in output buffer.
// Make sure number of input samples is large enough to have enough
// output samples to process in following stages since decimation
// process reduces the number of output samples per block.
// Also InLength must be a multiple of 2^N where N is the maximum
// decimation by 2 stages expected.
// ~50nSec/sample at decimation by 128
//////////////////////////////////////////////////////////////////////
int CDownConvert::ProcessData(int InLength, TYPECPX* pInData, TYPECPX* pOutData)
{
int i,j;
TYPECPX dtmp;
TYPECPX Osc;
//StartPerformance();
#if (NCO_VCASM || NCO_GCCASM)
TYPEREAL dPhaseAcc = m_NcoTime;
TYPEREAL dASMCos = 0.0;
TYPEREAL dASMSin = 0.0;
TYPEREAL* pdCosAns = &dASMCos;
TYPEREAL* pdSinAns = &dASMSin;
#endif
//263uS using sin/cos or 70uS using quadrature osc or 200uS using _asm
for(i=0; i<InLength; i++)
{
dtmp = pInData[i];
#if NCO_LIB
Osc.re = MCOS(m_NcoTime);
Osc.im = MSIN(m_NcoTime);
m_NcoTime += m_NcoInc;
#elif NCO_OSC
TYPEREAL OscGn;
Osc.re = m_Osc1.re * m_OscCos - m_Osc1.im * m_OscSin;
Osc.im = m_Osc1.im * m_OscCos + m_Osc1.re * m_OscSin;
OscGn = 1.95 - (m_Osc1.re*m_Osc1.re + m_Osc1.im*m_Osc1.im);
m_Osc1.re = OscGn * Osc.re;
m_Osc1.im = OscGn * Osc.im;
#elif NCO_VCASM
_asm
{
fld QWORD PTR [dPhaseAcc]
fsincos
mov ebx,[pdCosAns] ; get the pointer into ebx
fstp QWORD PTR [ebx] ; store the result through the pointer
mov ebx,[pdSinAns]
fstp QWORD PTR [ebx]
}
dPhaseAcc += m_NcoInc;
Osc.re = dASMCos;
Osc.im = dASMSin;
#elif NCO_GCCASM
asm volatile ("fsincos" : "=%&t" (dASMCos), "=%&u" (dASMSin) : "0" (dPhaseAcc));
dPhaseAcc += m_NcoInc;
Osc.re = dASMCos;
Osc.im = dASMSin;
#endif
//Cpx multiply by shift frequency
pInData[i].re = ((dtmp.re * Osc.re) - (dtmp.im * Osc.im));
pInData[i].im = ((dtmp.re * Osc.im) + (dtmp.im * Osc.re));
}
#if (NCO_VCASM || NCO_GCCASM)
m_NcoTime = dPhaseAcc;
#elif !NCO_OSC
m_NcoTime = MFMOD(m_NcoTime, K_2PI); //keep radian counter bounded
#endif
//now perform decimation of pInData by calling decimate by 2 stages
//until NULL pointer encountered designating end of chain
int n = InLength;
j = 0;
m_Mutex.lock();
while(m_pDecimatorPtrs[j])
{
n = m_pDecimatorPtrs[j++]->DecBy2(n, pInData, pInData);
//if(1==j)
//g_pTestBench->DisplayData(n, 1.0, (TYPECPX*)pInData, 615385/2.0);
}
m_Mutex.unlock();
for(i=0; i<n; i++)
pOutData[i] = pInData[i];
//StopPerformance(InLength);
return n;
}
// *&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*
//////////////////////////////////////////////////////////////////////
//Decimate by 2 Halfband filter class implementation
//////////////////////////////////////////////////////////////////////
CDownConvert::CHalfBandDecimateBy2::CHalfBandDecimateBy2(int len,const TYPEREAL* pCoef )
: m_FirLength(len), m_pCoef(pCoef)
{
//create buffer for FIR implementation
m_pHBFirBuf = new TYPECPX[MAX_HALF_BAND_BUFSIZE];
TYPECPX CPXZERO = {0.0,0.0};
for(int i=0; i<MAX_HALF_BAND_BUFSIZE ;i++)
m_pHBFirBuf[i] = CPXZERO;
}
//////////////////////////////////////////////////////////////////////
// Half band filter and decimate by 2 function.
// Two restrictions on this routine:
// InLength must be larger or equal to the Number of Halfband Taps
// InLength must be an even number ~37nS
//////////////////////////////////////////////////////////////////////
int CDownConvert::CHalfBandDecimateBy2::DecBy2(int InLength, TYPECPX* pInData, TYPECPX* pOutData)
{
int i;
int j;
int numoutsamples = 0;
if(InLength<m_FirLength) //safety net to make sure InLength is large enough to process
return InLength/2;
//StartPerformance();
//copy input samples into buffer starting at position m_FirLength-1
for(i=0,j = m_FirLength - 1; i<InLength; i++)
m_pHBFirBuf[j++] = pInData[i];
//perform decimation FIR filter on even samples
for(i=0; i<InLength; i+=2)
{
TYPECPX acc;
acc.re = ( m_pHBFirBuf[i].re * m_pCoef[0] );
acc.im = ( m_pHBFirBuf[i].im * m_pCoef[0] );
for(j=0; j<m_FirLength; j+=2) //only use even coefficients since odd are zero(except center point)
{
acc.re += ( m_pHBFirBuf[i+j].re * m_pCoef[j] );
acc.im += ( m_pHBFirBuf[i+j].im * m_pCoef[j] );
}
//now multiply the center coefficient
acc.re += ( m_pHBFirBuf[i+(m_FirLength-1)/2].re * m_pCoef[(m_FirLength-1)/2] );
acc.im += ( m_pHBFirBuf[i+(m_FirLength-1)/2].im * m_pCoef[(m_FirLength-1)/2] );
pOutData[numoutsamples++] = acc; //put output buffer
}
//need to copy last m_FirLength - 1 input samples in buffer to beginning of buffer
// for FIR wrap around management
for(i=0,j = InLength-m_FirLength+1; i<m_FirLength - 1; i++)
m_pHBFirBuf[i] = pInData[j++];
//StopPerformance(InLength);
return numoutsamples;
}
// *&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*
//////////////////////////////////////////////////////////////////////
//Decimate by 2 Fixed 11 Tap Halfband filter class implementation
// Loop unrolled for speed ~9nS /samp
//////////////////////////////////////////////////////////////////////
CDownConvert::CHalfBand11TapDecimateBy2::CHalfBand11TapDecimateBy2()
{
//preload only the taps that are used since evey other one is zero
//except center tap 5
H0 = HB11TAP_H[0]; H2 = HB11TAP_H[2]; H4 = HB11TAP_H[4];
H5 = HB11TAP_H[5];
H6 = HB11TAP_H[6]; H8 = HB11TAP_H[8]; H10 = HB11TAP_H[10];
TYPECPX CPXZERO = {0.0,0.0};
d0 = CPXZERO; d1 = CPXZERO; d2 = CPXZERO; d3 = CPXZERO;
d4 = CPXZERO; d5 = CPXZERO; d6 = CPXZERO; d7 = CPXZERO;
d8 = CPXZERO; d9 = CPXZERO;
}
//////////////////////////////////////////////////////////////////////
//Decimate by 2 Fixed 11 Tap Halfband filter class implementation
// Two restrictions on this routine:
// InLength must be larger or equal to the Number of Halfband Taps(11)
// InLength must be an even number
// Loop unrolled for speed ~15nS/samp
//////////////////////////////////////////////////////////////////////
int CDownConvert::CHalfBand11TapDecimateBy2::DecBy2(int InLength, TYPECPX* pInData, TYPECPX* pOutData)
{
//StartPerformance();
//first calculate beginning 10 samples using previous samples in delay buffer
TYPECPX tmpout[9]; //use temp buffer so outbuf can be same as inbuf
tmpout[0].re = H0*d0.re + H2*d2.re + H4*d4.re + H5*d5.re + H6*d6.re + H8*d8.re
+ H10*pInData[0].re;
tmpout[0].im = H0*d0.im + H2*d2.im + H4*d4.im + H5*d5.im + H6*d6.im + H8*d8.im
+ H10*pInData[0].im;
tmpout[1].re = H0*d2.re + H2*d4.re + H4*d6.re + H5*d7.re + H6*d8.re
+ H8*pInData[0].re + H10*pInData[2].re;
tmpout[1].im = H0*d2.im + H2*d4.im + H4*d6.im + H5*d7.im + H6*d8.im
+ H8*pInData[0].im + H10*pInData[2].im;
tmpout[2].re = H0*d4.re + H2*d6.re + H4*d8.re + H5*d9.re
+ H6*pInData[0].re + H8*pInData[2].re + H10*pInData[4].re;
tmpout[2].im = H0*d4.im + H2*d6.im + H4*d8.im + H5*d9.im
+ H6*pInData[0].im + H8*pInData[2].im + H10*pInData[4].im;
tmpout[3].re = H0*d6.re + H2*d8.re + H4*pInData[0].re + H5*pInData[1].re
+ H6*pInData[2].re + H8*pInData[4].re + H10*pInData[6].re;
tmpout[3].im = H0*d6.im + H2*d8.im + H4*pInData[0].im + H5*pInData[1].im
+ H6*pInData[2].im + H8*pInData[4].im + H10*pInData[6].im;
tmpout[4].re = H0*d8.re + H2*pInData[0].re + H4*pInData[2].re + H5*pInData[3].re
+ H6*pInData[4].re + H8*pInData[6].re + H10*pInData[8].re;
tmpout[4].im = H0*d8.im + H2*pInData[0].im + H4*pInData[2].im + H5*pInData[3].im
+ H6*pInData[4].im + H8*pInData[6].im + H10*pInData[8].im;
tmpout[5].re = H0*pInData[0].re + H2*pInData[2].re + H4*pInData[4].re + H5*pInData[5].re
+ H6*pInData[6].re + H8*pInData[8].re + H10*pInData[10].re;
tmpout[5].im = H0*pInData[0].im + H2*pInData[2].im + H4*pInData[4].im + H5*pInData[5].im
+ H6*pInData[6].im + H8*pInData[8].im + H10*pInData[10].im;
tmpout[6].re = H0*pInData[2].re + H2*pInData[4].re + H4*pInData[6].re + H5*pInData[7].re
+ H6*pInData[8].re + H8*pInData[10].re + H10*pInData[12].re;
tmpout[6].im = H0*pInData[2].im + H2*pInData[4].im + H4*pInData[6].im + H5*pInData[7].im
+ H6*pInData[8].im + H8*pInData[10].im + H10*pInData[12].im;
tmpout[7].re = H0*pInData[4].re + H2*pInData[6].re + H4*pInData[8].re + H5*pInData[9].re
+ H6*pInData[10].re + H8*pInData[12].re + H10*pInData[14].re;
tmpout[7].im = H0*pInData[4].im + H2*pInData[6].im + H4*pInData[8].im + H5*pInData[9].im
+ H6*pInData[10].im + H8*pInData[12].im + H10*pInData[14].im;
tmpout[8].re = H0*pInData[6].re + H2*pInData[8].re + H4*pInData[10].re + H5*pInData[11].re
+ H6*pInData[12].re + H8*pInData[14].re + H10*pInData[16].re;
tmpout[8].im = H0*pInData[6].im + H2*pInData[8].im + H4*pInData[10].im + H5*pInData[11].im
+ H6*pInData[12].im + H8*pInData[14].im + H10*pInData[16].im;
//now loop through remaining input samples
TYPECPX* pIn = &pInData[8];
TYPECPX* pOut = &pOutData[9];
for(int i=0; i<(InLength-11-6 )/2; i++)
{
(*pOut).re = H0*pIn[0].re + H2*pIn[2].re + H4*pIn[4].re + H5*pIn[5].re
+ H6*pIn[6].re + H8*pIn[8].re + H10*pIn[10].re;
(*pOut++).im = H0*pIn[0].im + H2*pIn[2].im + H4*pIn[4].im + H5*pIn[5].im
+ H6*pIn[6].im + H8*pIn[8].im + H10*pIn[10].im;
pIn += 2;
}
//copy first outputs back into output array so outbuf can be same as inbuf
pOutData[0] = tmpout[0]; pOutData[1] = tmpout[1];
pOutData[2] = tmpout[2]; pOutData[3] = tmpout[3];
pOutData[4] = tmpout[4]; pOutData[5] = tmpout[5];
pOutData[6] = tmpout[6]; pOutData[7] = tmpout[7];
pOutData[8] = tmpout[8];
//copy last 10 input samples into delay buffer for next time
pIn = &pInData[InLength-1];
d9 = *pIn--; d8 = *pIn--; d7 = *pIn--;
d6 = *pIn--; d5 = *pIn--; d4 = *pIn--;
d3 = *pIn--; d2 = *pIn--; d1 = *pIn--; d0 = *pIn;
//StopPerformance(InLength);
return InLength/2;
}
// *&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*
//////////////////////////////////////////////////////////////////////
//Decimate by 2 CIC 3 stage
// -80dB alias rejection up to Fs * (.5 - .4985)
//////////////////////////////////////////////////////////////////////
CDownConvert::CCicN3DecimateBy2::CCicN3DecimateBy2()
{
m_Xodd.re = 0.0; m_Xodd.im = 0.0;
m_Xeven.re = 0.0; m_Xeven.im = 0.0;
}
//////////////////////////////////////////////////////////////////////
//Function performs decimate by 2 using polyphase decompostion
// implemetation of a CIC N=3 filter.
// InLength must be an even number
//returns number of output samples processed
// 6nS/sample
//////////////////////////////////////////////////////////////////////
int CDownConvert::CCicN3DecimateBy2::DecBy2(int InLength, TYPECPX* pInData, TYPECPX* pOutData)
{
int i,j;
TYPECPX even,odd;
//StartPerformance();
for(i=0,j=0; i<InLength; i+=2,j++)
{ //mag gn=8
even = pInData[i];
odd = pInData[i+1];
pOutData[j].re = .125*( odd.re + m_Xeven.re + 3.0*(m_Xodd.re + even.re) );
pOutData[j].im = .125*( odd.im + m_Xeven.im + 3.0*(m_Xodd.im + even.im) );
m_Xodd = odd;
m_Xeven = even;
}
//StopPerformance(InLength);
return j;
}
|