File: downconvert.cpp

package info (click to toggle)
cutesdr 1.20-4
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 2,848 kB
  • sloc: cpp: 18,902; makefile: 21; sh: 5
file content (490 lines) | stat: -rw-r--r-- 19,143 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
// downconvert.cpp: implementation of the CDownConvert class.
//
//  This class takes I/Q baseband data and performs tuning
//(Frequency shifting of the baseband signal) as well as
// decimation in powers of 2 after the shifting.
//
// History:
//	2010-09-15  Initial creation MSW
//	2011-03-27  Initial release
//	2011-04-20  Changed some scope resolution operators to allow compiling with different compilers
//	2013-02-01  Fixed issue with missing first coef of HB calculation
//	2013-07-28  Added single/double precision math macros
//////////////////////////////////////////////////////////////////////
//==========================================================================================
// + + +   This Software is released under the "Simplified BSD License"  + + +
//Copyright 2010 Moe Wheatley. All rights reserved.
//
//Redistribution and use in source and binary forms, with or without modification, are
//permitted provided that the following conditions are met:
//
//   1. Redistributions of source code must retain the above copyright notice, this list of
//	  conditions and the following disclaimer.
//
//   2. Redistributions in binary form must reproduce the above copyright notice, this list
//	  of conditions and the following disclaimer in the documentation and/or other materials
//	  provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY Moe Wheatley ``AS IS'' AND ANY EXPRESS OR IMPLIED
//WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
//FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Moe Wheatley OR
//CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
//SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
//ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//The views and conclusions contained in the software and documentation are those of the
//authors and should not be interpreted as representing official policies, either expressed
//or implied, of Moe Wheatley.
//==========================================================================================
#include "dsp/downconvert.h"
#include "dsp/filtercoef.h"
#include "gui/testbench.h"
#include "interface/perform.h"
#include <QDebug>

//pick a method of calculating the NCO
#define NCO_LIB 0		//normal sin cos library (188nS)
#define NCO_OSC 1		//quadrature oscillator (25nS)
#define NCO_VCASM 0		//Visual C assembly call to floating point sin/cos instruction
#define NCO_GCCASM 0	//GCC assembly call to floating point sin/cos instruction (100nS)

#define MIN_OUTPUT_RATE (7900.0*2.0)

#define MAX_HALF_BAND_BUFSIZE 32768


//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CDownConvert::CDownConvert()
{
int i;
	m_NcoInc = 0.0;
	m_NcoTime = 0.0;
	m_NcoFreq = 0.0;
	m_CW_Offset = 0.0;
	m_InRate = 100000.0;
	m_MaxBW = 10000.0;
	for(i=0; i<MAX_DECSTAGES; i++)
		m_pDecimatorPtrs[i] = NULL;
	m_Osc1.re = 1.0;	//initialize unit vector that will get rotated
	m_Osc1.im = 0.0;
}

CDownConvert::~CDownConvert()
{
	DeleteFilters();
}

//////////////////////////////////////////////////////////////////////
// Delete all active Filters in m_pDecimatorPtrs array
//////////////////////////////////////////////////////////////////////
void CDownConvert::DeleteFilters()
{
	for(int i=0; i<MAX_DECSTAGES; i++)
	{
		if(m_pDecimatorPtrs[i])
		{
			delete m_pDecimatorPtrs[i];
			m_pDecimatorPtrs[i] = NULL;
		}
	}
}

//////////////////////////////////////////////////////////////////////
// Sets NCO Frequency parameters
//////////////////////////////////////////////////////////////////////
void CDownConvert::SetFrequency(TYPEREAL NcoFreq)
{
TYPEREAL tmpf = NcoFreq + m_CW_Offset;

	m_NcoFreq = tmpf;
	m_NcoInc = K_2PI*m_NcoFreq/m_InRate;
	m_OscCos = MCOS(m_NcoInc);
	m_OscSin = MSIN(m_NcoInc);
//qDebug()<<"NCO "<<m_NcoFreq;
}

//////////////////////////////////////////////////////////////////////
// Calculates sequence and number of decimation stages based on
// input sample rate and desired output bandwidth.  Returns final output rate
//from divide by 2 stages.
//////////////////////////////////////////////////////////////////////
TYPEREAL CDownConvert::SetDataRate(TYPEREAL InRate, TYPEREAL MaxBW)
{
int n = 0;
TYPEREAL f = InRate;
	if( (m_InRate!=InRate) ||
		(m_MaxBW!=MaxBW) )
	{
		m_InRate = InRate;
		m_MaxBW = MaxBW;
		m_Mutex.lock();
		DeleteFilters();
		//loop until closest output rate is found and list of pointers to decimate by 2 stages is generated
		while( (f > (m_MaxBW / HB51TAP_MAX) ) && (f > MIN_OUTPUT_RATE) )
		{
			if(f >= (m_MaxBW / CIC3_MAX) )		//See if can use CIC order 3
				m_pDecimatorPtrs[n++] =
						new CCicN3DecimateBy2;
			else if(f >= (m_MaxBW / HB11TAP_MAX) )	//See if can use fixed 11 Tap Halfband
				m_pDecimatorPtrs[n++] =
						new CHalfBand11TapDecimateBy2();
			else if(f >= (m_MaxBW / HB15TAP_MAX) )	//See if can use Halfband 15 Tap
				m_pDecimatorPtrs[n++] =
						new CHalfBandDecimateBy2(HB15TAP_LENGTH, HB15TAP_H);
			else if(f >= (m_MaxBW / HB19TAP_MAX) )	//See if can use Halfband 19 Tap
				m_pDecimatorPtrs[n++] =
						new CHalfBandDecimateBy2(HB19TAP_LENGTH, HB19TAP_H);
			else if(f >= (m_MaxBW / HB23TAP_MAX) )	//See if can use Halfband 23 Tap
				m_pDecimatorPtrs[n++] =
						new CHalfBandDecimateBy2(HB23TAP_LENGTH, HB23TAP_H);
			else if(f >= (m_MaxBW / HB27TAP_MAX) )	//See if can use Halfband 27 Tap
				m_pDecimatorPtrs[n++] =
						new CHalfBandDecimateBy2(HB27TAP_LENGTH, HB27TAP_H);
			else if(f >= (m_MaxBW / HB31TAP_MAX) )	//See if can use Halfband 31 Tap
				m_pDecimatorPtrs[n++] =
						new CHalfBandDecimateBy2(HB31TAP_LENGTH, HB31TAP_H);
			else if(f >= (m_MaxBW / HB35TAP_MAX) )	//See if can use Halfband 35 Tap
				m_pDecimatorPtrs[n++] =
						new CHalfBandDecimateBy2(HB35TAP_LENGTH, HB35TAP_H);
			else if(f >= (m_MaxBW / HB39TAP_MAX) )	//See if can use Halfband 39 Tap
				m_pDecimatorPtrs[n++] =
						new CHalfBandDecimateBy2(HB39TAP_LENGTH, HB39TAP_H);
			else if(f >= (m_MaxBW / HB43TAP_MAX) )	//See if can use Halfband 43 Tap
				m_pDecimatorPtrs[n++] =
						new CHalfBandDecimateBy2(HB43TAP_LENGTH, HB43TAP_H);
			else if(f >= (m_MaxBW / HB47TAP_MAX) )	//See if can use Halfband 47 Tap
				m_pDecimatorPtrs[n++] =
						new CHalfBandDecimateBy2(HB47TAP_LENGTH, HB47TAP_H);
			else if(f >= (m_MaxBW / HB51TAP_MAX) )	//See if can use Halfband 51 Tap
				m_pDecimatorPtrs[n++] =
						new CHalfBandDecimateBy2(HB51TAP_LENGTH, HB51TAP_H);
			f /= 2.0;
		}
		m_Mutex.unlock();
		m_OutputRate = f;
		SetFrequency(m_NcoFreq);
qDebug()<<"Filters "<<n<< " Fin="<<InRate<<" BW="<<m_MaxBW<<" fout="<<m_OutputRate;
	}
	return m_OutputRate;
}

//////////////////////////////////////////////////////////////////////
// Calculates sequence and number of decimation stages for WBFM based on
// input sample rate and desired output bandwidth.  Returns final output rate
//from divide by 2 stages.
//////////////////////////////////////////////////////////////////////
TYPEREAL CDownConvert::SetWfmDataRate(TYPEREAL InRate, TYPEREAL MaxBW)
{
int n = 0;
TYPEREAL f = InRate;
	if( (m_InRate!=InRate) ||
		(m_MaxBW!=MaxBW) )
	{
		m_InRate = InRate;
		m_MaxBW = MaxBW;
		m_Mutex.lock();
		DeleteFilters();
		//loop until closest output rate is found and list of pointers to decimate by 2 stages is generated
		while( (f > 400000.0)  )
		{
			m_pDecimatorPtrs[n++] = new CDownConvert::CHalfBandDecimateBy2(HB51TAP_LENGTH, HB51TAP_H);
			f /= 2.0;
		}
		m_OutputRate = f;
		m_Mutex.unlock();
		SetFrequency(m_NcoFreq);
	}
	return m_OutputRate;
}

//////////////////////////////////////////////////////////////////////
// Processes 'InLength' I/Q samples of 'pInData' buffer
// and places in 'pOutData' buffer.
// Returns number of samples available in output buffer.
// Make sure number of  input samples is large enough to have enough
// output samples to process in following stages since decimation
// process reduces the number of output samples per block.
// Also InLength must be a multiple of 2^N where N is the maximum
// decimation by 2 stages expected.
// ~50nSec/sample at decimation by 128
//////////////////////////////////////////////////////////////////////
int CDownConvert::ProcessData(int InLength, TYPECPX* pInData, TYPECPX* pOutData)
{
int i,j;
TYPECPX dtmp;
TYPECPX Osc;

//StartPerformance();

#if (NCO_VCASM || NCO_GCCASM)
TYPEREAL	dPhaseAcc = m_NcoTime;
TYPEREAL	dASMCos   = 0.0;
TYPEREAL	dASMSin   = 0.0;
TYPEREAL*	pdCosAns  = &dASMCos;
TYPEREAL*	pdSinAns  = &dASMSin;
#endif

//263uS using sin/cos or 70uS using quadrature osc or 200uS using _asm
	for(i=0; i<InLength; i++)
	{
		dtmp = pInData[i];
#if NCO_LIB
		Osc.re = MCOS(m_NcoTime);
		Osc.im = MSIN(m_NcoTime);
		m_NcoTime += m_NcoInc;
#elif NCO_OSC
		TYPEREAL OscGn;
		Osc.re = m_Osc1.re * m_OscCos - m_Osc1.im * m_OscSin;
		Osc.im = m_Osc1.im * m_OscCos + m_Osc1.re * m_OscSin;
		OscGn = 1.95 - (m_Osc1.re*m_Osc1.re + m_Osc1.im*m_Osc1.im);
		m_Osc1.re = OscGn * Osc.re;
		m_Osc1.im = OscGn * Osc.im;
#elif NCO_VCASM
		_asm
		{
			fld QWORD PTR [dPhaseAcc]
			fsincos
			mov ebx,[pdCosAns]		;	get the pointer into ebx
			fstp QWORD PTR [ebx]	;	store the result through the pointer
			mov ebx,[pdSinAns]
			fstp QWORD PTR [ebx]
		}
		dPhaseAcc += m_NcoInc;
		Osc.re = dASMCos;
		Osc.im = dASMSin;
#elif NCO_GCCASM
		asm volatile ("fsincos" : "=%&t" (dASMCos), "=%&u" (dASMSin) : "0" (dPhaseAcc));
		dPhaseAcc += m_NcoInc;
		Osc.re = dASMCos;
		Osc.im = dASMSin;
#endif

		//Cpx multiply by shift frequency
		pInData[i].re = ((dtmp.re * Osc.re) - (dtmp.im * Osc.im));
		pInData[i].im = ((dtmp.re * Osc.im) + (dtmp.im * Osc.re));
	}
#if (NCO_VCASM || NCO_GCCASM)
	m_NcoTime = dPhaseAcc;
#elif !NCO_OSC
	m_NcoTime = MFMOD(m_NcoTime, K_2PI);	//keep radian counter bounded
#endif

	//now perform decimation of pInData by calling decimate by 2 stages
	//until NULL pointer encountered designating end of chain
	int n = InLength;
	j = 0;
	m_Mutex.lock();
	while(m_pDecimatorPtrs[j])
	{
		n = m_pDecimatorPtrs[j++]->DecBy2(n, pInData, pInData);
//if(1==j)
//g_pTestBench->DisplayData(n, 1.0, (TYPECPX*)pInData, 615385/2.0);
	}
	m_Mutex.unlock();
	for(i=0; i<n; i++)
		pOutData[i] = pInData[i];
//StopPerformance(InLength);
	return n;
}

// *&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*

//////////////////////////////////////////////////////////////////////
//Decimate by 2 Halfband filter class implementation
//////////////////////////////////////////////////////////////////////
CDownConvert::CHalfBandDecimateBy2::CHalfBandDecimateBy2(int len,const TYPEREAL* pCoef )
	: m_FirLength(len), m_pCoef(pCoef)
{
	//create buffer for FIR implementation
	m_pHBFirBuf = new TYPECPX[MAX_HALF_BAND_BUFSIZE];
	TYPECPX CPXZERO = {0.0,0.0};
	for(int i=0; i<MAX_HALF_BAND_BUFSIZE ;i++)
		m_pHBFirBuf[i] = CPXZERO;
}

//////////////////////////////////////////////////////////////////////
// Half band filter and decimate by 2 function.
// Two restrictions on this routine:
// InLength must be larger or equal to the Number of Halfband Taps
// InLength must be an even number  ~37nS
//////////////////////////////////////////////////////////////////////
int CDownConvert::CHalfBandDecimateBy2::DecBy2(int InLength, TYPECPX* pInData, TYPECPX* pOutData)
{
int i;
int j;
int numoutsamples = 0;
	if(InLength<m_FirLength)	//safety net to make sure InLength is large enough to process
		return InLength/2;
//StartPerformance();
	//copy input samples into buffer starting at position m_FirLength-1
	for(i=0,j = m_FirLength - 1; i<InLength; i++)
		m_pHBFirBuf[j++] = pInData[i];
	//perform decimation FIR filter on even samples
	for(i=0; i<InLength; i+=2)
	{
		TYPECPX acc;
		acc.re = ( m_pHBFirBuf[i].re * m_pCoef[0] );
		acc.im = ( m_pHBFirBuf[i].im * m_pCoef[0] );
		for(j=0; j<m_FirLength; j+=2)	//only use even coefficients since odd are zero(except center point)
		{
			acc.re += ( m_pHBFirBuf[i+j].re * m_pCoef[j] );
			acc.im += ( m_pHBFirBuf[i+j].im * m_pCoef[j] );
		}
		//now multiply the center coefficient
		acc.re += ( m_pHBFirBuf[i+(m_FirLength-1)/2].re * m_pCoef[(m_FirLength-1)/2] );
		acc.im += ( m_pHBFirBuf[i+(m_FirLength-1)/2].im * m_pCoef[(m_FirLength-1)/2] );
		pOutData[numoutsamples++] = acc;	//put output buffer

	}
	//need to copy last m_FirLength - 1 input samples in buffer to beginning of buffer
	// for FIR wrap around management
	for(i=0,j = InLength-m_FirLength+1; i<m_FirLength - 1; i++)
		m_pHBFirBuf[i] = pInData[j++];
//StopPerformance(InLength);
	return numoutsamples;
}

// *&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*

//////////////////////////////////////////////////////////////////////
//Decimate by 2 Fixed 11 Tap Halfband filter class implementation
// Loop unrolled for speed ~9nS /samp
//////////////////////////////////////////////////////////////////////
CDownConvert::CHalfBand11TapDecimateBy2::CHalfBand11TapDecimateBy2()
{
	//preload only the taps that are used since evey other one is zero
	//except center tap 5
	H0 = HB11TAP_H[0]; H2 = HB11TAP_H[2]; H4 = HB11TAP_H[4];
	H5 = HB11TAP_H[5];
	H6 = HB11TAP_H[6]; H8 = HB11TAP_H[8]; H10 = HB11TAP_H[10];
	TYPECPX CPXZERO = {0.0,0.0};
	d0 = CPXZERO; d1 = CPXZERO;	d2 = CPXZERO; d3 = CPXZERO;
	d4 = CPXZERO; d5 = CPXZERO;	d6 = CPXZERO; d7 = CPXZERO;
	d8 = CPXZERO; d9 = CPXZERO;
}

//////////////////////////////////////////////////////////////////////
//Decimate by 2 Fixed 11 Tap Halfband filter class implementation
// Two restrictions on this routine:
// InLength must be larger or equal to the Number of Halfband Taps(11)
// InLength must be an even number
// Loop unrolled for speed ~15nS/samp
//////////////////////////////////////////////////////////////////////
int CDownConvert::CHalfBand11TapDecimateBy2::DecBy2(int InLength, TYPECPX* pInData, TYPECPX* pOutData)
{
//StartPerformance();
	//first calculate beginning 10 samples using previous samples in delay buffer
	TYPECPX tmpout[9];	//use temp buffer so outbuf can be same as inbuf
	tmpout[0].re = H0*d0.re + H2*d2.re + H4*d4.re + H5*d5.re + H6*d6.re + H8*d8.re
					 + H10*pInData[0].re;
	tmpout[0].im = H0*d0.im + H2*d2.im + H4*d4.im + H5*d5.im + H6*d6.im + H8*d8.im
					 + H10*pInData[0].im;

	tmpout[1].re = H0*d2.re + H2*d4.re + H4*d6.re + H5*d7.re + H6*d8.re
					 + H8*pInData[0].re + H10*pInData[2].re;
	tmpout[1].im = H0*d2.im + H2*d4.im + H4*d6.im + H5*d7.im + H6*d8.im
					 + H8*pInData[0].im + H10*pInData[2].im;

	tmpout[2].re = H0*d4.re + H2*d6.re + H4*d8.re + H5*d9.re
					 + H6*pInData[0].re + H8*pInData[2].re + H10*pInData[4].re;
	tmpout[2].im = H0*d4.im + H2*d6.im + H4*d8.im + H5*d9.im
					 + H6*pInData[0].im + H8*pInData[2].im + H10*pInData[4].im;

	tmpout[3].re = H0*d6.re + H2*d8.re + H4*pInData[0].re + H5*pInData[1].re
					 + H6*pInData[2].re + H8*pInData[4].re + H10*pInData[6].re;
	tmpout[3].im = H0*d6.im + H2*d8.im + H4*pInData[0].im + H5*pInData[1].im
					 + H6*pInData[2].im + H8*pInData[4].im + H10*pInData[6].im;

	tmpout[4].re = H0*d8.re + H2*pInData[0].re + H4*pInData[2].re + H5*pInData[3].re
					 + H6*pInData[4].re + H8*pInData[6].re + H10*pInData[8].re;
	tmpout[4].im = H0*d8.im + H2*pInData[0].im + H4*pInData[2].im + H5*pInData[3].im
					 + H6*pInData[4].im + H8*pInData[6].im + H10*pInData[8].im;

	tmpout[5].re = H0*pInData[0].re + H2*pInData[2].re + H4*pInData[4].re + H5*pInData[5].re
					 + H6*pInData[6].re + H8*pInData[8].re + H10*pInData[10].re;
	tmpout[5].im = H0*pInData[0].im + H2*pInData[2].im + H4*pInData[4].im + H5*pInData[5].im
					 + H6*pInData[6].im + H8*pInData[8].im + H10*pInData[10].im;

	tmpout[6].re = H0*pInData[2].re + H2*pInData[4].re + H4*pInData[6].re + H5*pInData[7].re
					 + H6*pInData[8].re + H8*pInData[10].re + H10*pInData[12].re;
	tmpout[6].im = H0*pInData[2].im + H2*pInData[4].im + H4*pInData[6].im + H5*pInData[7].im
					 + H6*pInData[8].im + H8*pInData[10].im + H10*pInData[12].im;

	tmpout[7].re = H0*pInData[4].re + H2*pInData[6].re + H4*pInData[8].re + H5*pInData[9].re
					 + H6*pInData[10].re + H8*pInData[12].re + H10*pInData[14].re;
	tmpout[7].im = H0*pInData[4].im + H2*pInData[6].im + H4*pInData[8].im + H5*pInData[9].im
					 + H6*pInData[10].im + H8*pInData[12].im + H10*pInData[14].im;

	tmpout[8].re = H0*pInData[6].re + H2*pInData[8].re + H4*pInData[10].re + H5*pInData[11].re
					 + H6*pInData[12].re + H8*pInData[14].re + H10*pInData[16].re;
	tmpout[8].im = H0*pInData[6].im + H2*pInData[8].im + H4*pInData[10].im + H5*pInData[11].im
					 + H6*pInData[12].im + H8*pInData[14].im + H10*pInData[16].im;

	//now loop through remaining input samples
	TYPECPX* pIn = &pInData[8];
	TYPECPX* pOut = &pOutData[9];
	for(int i=0; i<(InLength-11-6 )/2; i++)
	{
		(*pOut).re   = H0*pIn[0].re + H2*pIn[2].re + H4*pIn[4].re + H5*pIn[5].re
					  + H6*pIn[6].re + H8*pIn[8].re + H10*pIn[10].re;
		(*pOut++).im = H0*pIn[0].im + H2*pIn[2].im + H4*pIn[4].im + H5*pIn[5].im
					  + H6*pIn[6].im + H8*pIn[8].im + H10*pIn[10].im;
		pIn += 2;
	}
	//copy first outputs back into output array so outbuf can be same as inbuf
	pOutData[0] = tmpout[0]; pOutData[1] = tmpout[1];
	pOutData[2] = tmpout[2]; pOutData[3] = tmpout[3];
	pOutData[4] = tmpout[4]; pOutData[5] = tmpout[5];
	pOutData[6] = tmpout[6]; pOutData[7] = tmpout[7];
	pOutData[8] = tmpout[8];

	//copy last 10 input samples into delay buffer for next time
	pIn = &pInData[InLength-1];
	d9 = *pIn--; d8 = *pIn--; d7 = *pIn--;
	d6 = *pIn--; d5 = *pIn--; d4 = *pIn--;
	d3 = *pIn--; d2 = *pIn--; d1 = *pIn--; d0 = *pIn;
//StopPerformance(InLength);
	return InLength/2;
}

// *&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*&*

//////////////////////////////////////////////////////////////////////
//Decimate by 2 CIC 3 stage
// -80dB alias rejection up to Fs * (.5 - .4985)
//////////////////////////////////////////////////////////////////////
CDownConvert::CCicN3DecimateBy2::CCicN3DecimateBy2()
{
	m_Xodd.re = 0.0; m_Xodd.im = 0.0;
	m_Xeven.re = 0.0; m_Xeven.im = 0.0;
}

//////////////////////////////////////////////////////////////////////
//Function performs decimate by 2 using polyphase decompostion
// implemetation of a CIC N=3 filter.
// InLength must be an even number
//returns number of output samples processed
// 6nS/sample
//////////////////////////////////////////////////////////////////////
int CDownConvert::CCicN3DecimateBy2::DecBy2(int InLength, TYPECPX* pInData, TYPECPX* pOutData)
{
int i,j;
TYPECPX even,odd;
//StartPerformance();
	for(i=0,j=0; i<InLength; i+=2,j++)
	{	//mag gn=8
		even = pInData[i];
		odd = pInData[i+1];
		pOutData[j].re = .125*( odd.re + m_Xeven.re + 3.0*(m_Xodd.re + even.re) );
		pOutData[j].im = .125*( odd.im + m_Xeven.im + 3.0*(m_Xodd.im + even.im) );
		m_Xodd = odd;
		m_Xeven = even;
	}
//StopPerformance(InLength);
	return j;
}