File: fmdemod.cpp

package info (click to toggle)
cutesdr 1.20-4
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 2,848 kB
  • sloc: cpp: 18,902; makefile: 21; sh: 5
file content (273 lines) | stat: -rw-r--r-- 10,623 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
// fmdemod.cpp: implementation of the CFmDemod class.
//
//  This class takes I/Q baseband data and performs
// FM demodulation and squelch
//
// History:
//	2011-01-17  Initial creation MSW
//	2011-03-27  Initial release
//	2011-08-07  Modified FIR filter initialization to force fixed size
//	2013-07-28  Added single/double precision math macros
//////////////////////////////////////////////////////////////////////

//==========================================================================================
// + + +   This Software is released under the "Simplified BSD License"  + + +
//Copyright 2010 Moe Wheatley. All rights reserved.
//
//Redistribution and use in source and binary forms, with or without modification, are
//permitted provided that the following conditions are met:
//
//   1. Redistributions of source code must retain the above copyright notice, this list of
//	  conditions and the following disclaimer.
//
//   2. Redistributions in binary form must reproduce the above copyright notice, this list
//	  of conditions and the following disclaimer in the documentation and/or other materials
//	  provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY Moe Wheatley ``AS IS'' AND ANY EXPRESS OR IMPLIED
//WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
//FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Moe Wheatley OR
//CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
//SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
//ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//The views and conclusions contained in the software and documentation are those of the
//authors and should not be interpreted as representing official policies, either expressed
//or implied, of Moe Wheatley.
//==========================================================================================
#include "fmdemod.h"
#include "gui/testbench.h"
#include "dsp/datatypes.h"
#include <QDebug>


#define FMPLL_RANGE 15000.0	//maximum deviation limit of PLL
#define VOICE_BANDWIDTH 3000.0

#define FMPLL_BW VOICE_BANDWIDTH	//natural frequency ~loop bandwidth
#define FMPLL_ZETA .707				//PLL Loop damping factor

#define FMDC_ALPHA 0.001	//time constant for DC removal filter

#define MAX_FMOUT 100000.0

#define SQUELCH_MAX 8000.0		//roughly the maximum noise average with no signal
#define SQUELCHAVE_TIMECONST .02
#define SQUELCH_HYSTERESIS 50.0

#define DEMPHASIS_TIME 80e-6

/////////////////////////////////////////////////////////////////////////////////
//	Construct FM demod object
/////////////////////////////////////////////////////////////////////////////////
CFmDemod::CFmDemod(TYPEREAL samplerate) : m_SampleRate(samplerate)
{
	m_FreqErrorDC = 0.0;
	m_NcoPhase = 0.0;
	m_NcoFreq = 0.0;

	SetSampleRate(m_SampleRate);
}


/////////////////////////////////////////////////////////////////////////////////
// Sets sample rate and adjusts any parameters that are affected.
/////////////////////////////////////////////////////////////////////////////////
void CFmDemod::SetSampleRate(TYPEREAL samplerate)
{
	m_SampleRate = samplerate;

	TYPEREAL norm = K_2PI/m_SampleRate;	//to normalize Hz to radians

	//initialize the PLL
	m_NcoLLimit = -FMPLL_RANGE * norm;		//clamp FM PLL NCO
	m_NcoHLimit = FMPLL_RANGE * norm;
	m_PllAlpha = 2.0*FMPLL_ZETA*FMPLL_BW * norm;
	m_PllBeta = (m_PllAlpha * m_PllAlpha)/(4.0*FMPLL_ZETA*FMPLL_ZETA);

	m_OutGain = MAX_FMOUT/m_NcoHLimit;	//audio output level gain value

	//DC removal filter time constant
	m_DcAlpha = (1.0 - MEXP(-1.0/(m_SampleRate*FMDC_ALPHA)) );

	//initialize some noise squelch items
	m_SquelchHPFreq = VOICE_BANDWIDTH;
	m_SquelchAve = 0.0;
	m_SquelchState = true;
	m_SquelchAlpha = (1.0-MEXP(-1.0/(m_SampleRate*SQUELCHAVE_TIMECONST)) );

	m_DeemphasisAlpha = (1.0-MEXP(-1.0/(m_SampleRate*DEMPHASIS_TIME)) );
	m_DeemphasisAve = 0.0;

	m_LpFir.InitLPFilter(0,1.0,50.0,VOICE_BANDWIDTH, 1.6*VOICE_BANDWIDTH, m_SampleRate);

	InitNoiseSquelch();
}


/////////////////////////////////////////////////////////////////////////////////
// Sets squelch threshold based on 'Value' which goes from -160 to 0.
/////////////////////////////////////////////////////////////////////////////////
void CFmDemod::SetSquelch(int Value)
{
	m_SquelchThreshold = (SQUELCH_MAX*(TYPEREAL)Value)/-160.0;
}


/////////////////////////////////////////////////////////////////////////////////
// Sets up Highpass noise filter parameters based on input filter BW
/////////////////////////////////////////////////////////////////////////////////
void CFmDemod::InitNoiseSquelch()
{
	m_HpFir.InitHPFilter(0, 1.0, 50.0, m_SquelchHPFreq*.8, m_SquelchHPFreq*.65, m_SampleRate);
//	m_HpFir.InitHPFilter(0, 1.0, 50.0, VOICE_BANDWIDTH*2.0, VOICE_BANDWIDTH, m_SampleRate);
}


/////////////////////////////////////////////////////////////////////////////////
// Performs noise squelch by reading the noise power above the voice frequencies
/////////////////////////////////////////////////////////////////////////////////
void CFmDemod::PerformNoiseSquelch(int InLength, TYPEREAL* pOutData)
{
	if(InLength>MAX_SQBUF_SIZE)
		return;
	TYPEREAL sqbuf[MAX_SQBUF_SIZE];
	//high pass filter to get the high frequency noise above the voice
	m_HpFir.ProcessFilter(InLength, pOutData, sqbuf);
//g_pTestBench->DisplayData(InLength, 1.0, sqbuf, m_SampleRate,PROFILE_6);
	for(int i=0; i<InLength; i++)
	{
		TYPEREAL mag = MFABS( sqbuf[i] );	//get magnitude of High pass filtered data
		// exponential filter squelch magnitude
		m_SquelchAve = (1.0-m_SquelchAlpha)*m_SquelchAve + m_SquelchAlpha*mag;
//g_pTestBench->DisplayData(1, 1.0, &m_SquelchAve, m_SampleRate,PROFILE_3);
	}
	//perform squelch compare to threshold using some Hysteresis
	if(0==m_SquelchThreshold)
	{	//force squelch if zero(strong signal threshold)
		m_SquelchState = true;
	}
	else if(m_SquelchState)	//if in squelched state
	{
		if(m_SquelchAve < (m_SquelchThreshold-SQUELCH_HYSTERESIS))
			m_SquelchState = false;
	}
	else
	{
		if(m_SquelchAve >= (m_SquelchThreshold+SQUELCH_HYSTERESIS))
			m_SquelchState = true;
	}
//m_SquelchState = false;
	if(m_SquelchState)
	{	//zero output if squelched
		for(int i=0; i<InLength; i++)
			pOutData[i] = 0.0;
	}
	else
	{	//low pass filter audio if squelch is open
//		ProcessDeemphasisFilter(InLength, pOutData, pOutData);
		m_LpFir.ProcessFilter(InLength, pOutData, pOutData);
g_pTestBench->DisplayData(InLength, 1.0, pOutData, m_SampleRate,PROFILE_6);
	}
}

/////////////////////////////////////////////////////////////////////////////////
//	Process FM demod MONO version
/////////////////////////////////////////////////////////////////////////////////
int CFmDemod::ProcessData(int InLength, TYPEREAL FmBW, TYPECPX* pInData, TYPEREAL* pOutData)
{
TYPECPX tmp;
	if(m_SquelchHPFreq != FmBW)
	{	//update squelch HP filter cutoff from main filter BW
		m_SquelchHPFreq = FmBW;
		InitNoiseSquelch();
	}
	for(int i=0; i<InLength; i++)
	{
		TYPEREAL Sin = MSIN(m_NcoPhase);
		TYPEREAL Cos = MCOS(m_NcoPhase);
		//complex multiply input sample by NCO's  sin and cos
		tmp.re = Cos * pInData[i].re - Sin * pInData[i].im;
		tmp.im = Cos * pInData[i].im + Sin * pInData[i].re;
		//find current sample phase after being shifted by NCO frequency
		TYPEREAL phzerror = -MATAN2(tmp.im, tmp.re);
		//create new NCO frequency term
		m_NcoFreq += (m_PllBeta * phzerror);		//  radians per sampletime
		//clamp NCO frequency so doesn't get out of lock range
		if(m_NcoFreq > m_NcoHLimit)
			m_NcoFreq = m_NcoHLimit;
		else if(m_NcoFreq < m_NcoLLimit)
			m_NcoFreq = m_NcoLLimit;
		//update NCO phase with new value
		m_NcoPhase += (m_NcoFreq + m_PllAlpha * phzerror);
		//LP filter the NCO frequency term to get DC offset value
		m_FreqErrorDC = (1.0-m_DcAlpha)*m_FreqErrorDC + m_DcAlpha*m_NcoFreq;
		//subtract out DC term to get FM audio
		pOutData[i] = (m_NcoFreq-m_FreqErrorDC)*m_OutGain;
	}
//g_pTestBench->DisplayData(InLength, 1.0, pOutData, m_SampleRate, PROFILE_3);
	m_NcoPhase = MFMOD(m_NcoPhase, K_2PI);	//keep radian counter bounded
	PerformNoiseSquelch(InLength, pOutData);	//calculate squelch
	return InLength;
}

/////////////////////////////////////////////////////////////////////////////////
//	Process FM demod STEREO version
/////////////////////////////////////////////////////////////////////////////////
int CFmDemod::ProcessData(int InLength, TYPEREAL FmBW, TYPECPX* pInData, TYPECPX* pOutData)
{
TYPECPX tmp;
	if(m_SquelchHPFreq != FmBW)
	{	//update Squelch HP filter cutoff from main filter BW
		m_SquelchHPFreq = FmBW;
		InitNoiseSquelch();
	}
	for(int i=0; i<InLength; i++)
	{
		TYPEREAL Sin = MSIN(m_NcoPhase);
		TYPEREAL Cos = MCOS(m_NcoPhase);
		//complex multiply input sample by NCO's  sin and cos
		tmp.re = Cos * pInData[i].re - Sin * pInData[i].im;
		tmp.im = Cos * pInData[i].im + Sin * pInData[i].re;
		//find current sample phase after being shifted by NCO frequency
		TYPEREAL phzerror = -MATAN2(tmp.im, tmp.re);

		m_NcoFreq += (m_PllBeta * phzerror);		//  radians per sampletime
		//clamp NCO frequency so doesn't drift out of lock range
		if(m_NcoFreq > m_NcoHLimit)
			m_NcoFreq = m_NcoHLimit;
		else if(m_NcoFreq < m_NcoLLimit)
			m_NcoFreq = m_NcoLLimit;
		//update NCO phase with new value
		m_NcoPhase += (m_NcoFreq + m_PllAlpha * phzerror);
		//LP filter the NCO frequency term to get DC offset value
		m_FreqErrorDC = (1.0-m_DcAlpha)*m_FreqErrorDC + m_DcAlpha*m_NcoFreq;
		//subtract out DC term to get FM audio
		m_OutBuf[i] = (m_NcoFreq-m_FreqErrorDC)*m_OutGain;
	}
	m_NcoPhase = MFMOD(m_NcoPhase, K_2PI);	//keep radian counter bounded
	PerformNoiseSquelch(InLength, m_OutBuf);
	for(int i=0; i<InLength; i++)
	{	//copy audio stream into both output channels for stereo version
		pOutData[i].re = m_OutBuf[i];
		pOutData[i].im = m_OutBuf[i];
	}
	return InLength;
}

/////////////////////////////////////////////////////////////////////////////////
//	Process InLength InBuf[] samples and place in OutBuf[]
//MONO version
/////////////////////////////////////////////////////////////////////////////////
void CFmDemod::ProcessDeemphasisFilter(int InLength, TYPEREAL* InBuf, TYPEREAL* OutBuf)
{
	for(int i=0; i<InLength; i++)
	{
		m_DeemphasisAve = (1.0-m_DeemphasisAlpha)*m_DeemphasisAve + m_DeemphasisAlpha*InBuf[i];
		OutBuf[i] = m_DeemphasisAve;
	}
}