1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
//////////////////////////////////////////////////////////////////////
// FractResampler.cpp: implementation of the CFractResampler class.
//
// This class implements a fractional resampler that can be used to
//convert between different sample rates. A windowes sinc interpolator
// is used to create samples "in between" input samples.
//
// History:
// 2010-09-15 Initial creation MSW
// 2011-03-27 Initial release
// 2013-07-28 Added single/double precision math macros
/////////////////////////////////////////////////////////////////////
//==========================================================================================
// + + + This Software is released under the "Simplified BSD License" + + +
//Copyright 2010 Moe Wheatley. All rights reserved.
//
//Redistribution and use in source and binary forms, with or without modification, are
//permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY Moe Wheatley ``AS IS'' AND ANY EXPRESS OR IMPLIED
//WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
//FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Moe Wheatley OR
//CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
//SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
//ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//The views and conclusions contained in the software and documentation are those of the
//authors and should not be interpreted as representing official policies, either expressed
//or implied, of Moe Wheatley.
//==========================================================================================
#include "dsp/fractresampler.h"
#include <QDir>
#include <QFile>
#include <QDebug>
//////////////////////////////////////////////////////////////////////
// Local defines
//////////////////////////////////////////////////////////////////////
#ifdef USE_DOUBLE_PRECISION
#define SINC_PERIOD_PTS 10000 //number of points in sinc table between "zero crossings"
//smaller value increases noise floor
#define SINC_PERIODS 28 //number of input sample periods("zero crossings"-1) in
//sinc function(should be even)
//decreasing reduces alias free bandwidth
#else //if using single precision math assume lightweight CPU and dont worry so much about resample quality
#define SINC_PERIOD_PTS 1000
#define SINC_PERIODS 10
#endif
#define SINC_LENGTH ( (SINC_PERIODS)*SINC_PERIOD_PTS + 1)//number of total points in sinc table
#define MAX_SOUNDCARDVAL 32767.0
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CFractResampler::CFractResampler()
{
m_pSinc = NULL;
m_pInputBuf = NULL;
}
CFractResampler::~CFractResampler()
{
if(m_pSinc)
delete m_pSinc;
if(m_pInputBuf)
delete m_pInputBuf;
}
//////////////////////////////////////////////////////////////////////
// Initialize resampler memory and create windowed sinc table
// MaxInputSize is the largest number of input samples expected to be processed
//////////////////////////////////////////////////////////////////////
void CFractResampler::Init(int MaxInputSize)
{
int i;
TYPEREAL fi;
TYPEREAL window;
MaxInputSize += SINC_PERIODS; //expand buffer size to include wrap around
if(NULL == m_pSinc)
m_pSinc = new TYPEREAL[SINC_LENGTH];
if(m_pInputBuf)
delete m_pInputBuf;
m_pInputBuf = new TYPECPX[MaxInputSize];
for(i=0; i<MaxInputSize; i++)
{
m_pInputBuf[i].re = 0.0;
m_pInputBuf[i].im = 0.0;
}
for(i=0; i<SINC_LENGTH; i++)
{ //calc Blackman-Harris window points
window = (0.35875
- 0.48829*MCOS( (K_2PI*i)/(SINC_LENGTH-1) )
+ 0.14128*MCOS( (2.0*K_2PI*i)/(SINC_LENGTH-1) )
- 0.01168*MCOS( (3.0*K_2PI*i)/(SINC_LENGTH-1) ) );
//calculate sin(x)/x sinc point * window
fi = K_PI*(TYPEREAL)(i - SINC_LENGTH/2)/(TYPEREAL)SINC_PERIOD_PTS ;
if(i != SINC_LENGTH/2)
m_pSinc[i] = window * (TYPEREAL)MSIN( (TYPEREAL)fi )/(TYPEREAL)fi;
else
m_pSinc[i] = 1.0;
}
m_FloatTime = 0.0; //init floating point time accumulator
#if 0 //debug hack to write m_pSinc to a file for analysis
QDir::setCurrent("d:/");
QFile File;
File.setFileName("Sinc.txt");
if(File.open(QIODevice::WriteOnly))
{
qDebug()<<"file Opened OK";
char Buf[30000];
for( i=0; i<SINC_LENGTH; i++)
{
sprintf( Buf, "%19.12g\r\n", m_pSinc[i]);
File.write(Buf);
}
}
else
qDebug()<<"file Failed to Open";
#endif
}
//////////////////////////////////////////////////////////////////////
// Resample InLength samples in pInBuf and place into pOutBuf
// using Rate = input rate / output rate
// !!!! Make sure pOutBuf from caller is large enough to hold all
// the generated samples, especially if up converting !!!!!
// COMPLEX version
//////////////////////////////////////////////////////////////////////
int CFractResampler::Resample( int InLength, TYPEREAL Rate, TYPECPX* pInBuf, TYPECPX* pOutBuf)
{
int i;
int j;
int IntegerTime = (int)m_FloatTime; //integer input time accumulator
TYPEREAL dt = Rate; //output delta time as function of input sample time (input rate/output rate)
int outsamples = 0;
TYPECPX acc;
//copy input samples into buffer starting at position SINC_PERIODS
j = SINC_PERIODS;
for(i=0; i<InLength; i++)
m_pInputBuf[j++] = pInBuf[i];
//now calculate output samples by looping until end of input buffer
// is reached. The output position is incremented in fractional time
// of input sample time until all the possible input samples are
//processed.
while(IntegerTime < InLength )
{ //convolve sinc function with input samples where sinc
//function is centered at the output fractional time position
acc.re = 0.0; acc.im = 0.0;
for(i=1; i<=SINC_PERIODS; i++)
{
j = IntegerTime + i; //temp integer time position for convolution loop
int sindx = (int)(( (TYPEREAL)j - m_FloatTime) * (TYPEREAL)SINC_PERIOD_PTS );
acc.re += (m_pInputBuf[j].re * m_pSinc[sindx] );
acc.im += (m_pInputBuf[j].im * m_pSinc[sindx] );
}
pOutBuf[outsamples++] = acc;
m_FloatTime += dt; //inc floating pt output time step
IntegerTime = (int)m_FloatTime; //truncate to integer
}
m_FloatTime -= (TYPEREAL)InLength; //move floating time position back for next call
//keeping leftover fraction
//need to copy last SINC_PERIODS input samples in buffer to beginning of buffer
// for FIR wrap around management. j points to last input sample processed
j = InLength;
for(i=0; i<SINC_PERIODS; i++)
m_pInputBuf[i] = m_pInputBuf[j++];
return outsamples; //return number of output samples processed
}
//////////////////////////////////////////////////////////////////////
// Resample InLength samples in pInBuf and place into pOutBuf
// using Rate = input rate / output rate
// !!!! Make sure pOutBuf from caller is large enough to hold all
// the generated samples, especially if up converting !!!!!
// stereo Integer version
//////////////////////////////////////////////////////////////////////
int CFractResampler::Resample( int InLength, TYPEREAL Rate, TYPECPX* pInBuf, TYPESTEREO16* pOutBuf, TYPEREAL gain)
{
int i;
int j;
int IntegerTime = (int)m_FloatTime; //integer input time accumulator
TYPEREAL dt = Rate; //output delta time as function of input sample time (input rate/output rate)
int outsamples = 0;
TYPECPX acc;
//copy input samples into buffer starting at position SINC_PERIODS
j = SINC_PERIODS;
for(i=0; i<InLength; i++)
{
m_pInputBuf[j++] = pInBuf[i];
}
//now calculate output samples by looping until end of input buffer
// is reached. The output position is incremented in fractional time
// of input sample time until all the possible input samples are
//processed.
while(IntegerTime < InLength )
{ //convolve sinc function with input samples where sinc
//function is centered at the output fractional time position
acc.re = 0.0; acc.im = 0.0;
for(i=1; i<=SINC_PERIODS; i++)
{
j = IntegerTime + i; //temp integer time position for convolution loop
int sindx = (int)(( (TYPEREAL)j - m_FloatTime) * (TYPEREAL)SINC_PERIOD_PTS );
acc.re += (m_pInputBuf[j].re * m_pSinc[sindx] );
acc.im += (m_pInputBuf[j].im * m_pSinc[sindx] );
}
TYPECPX tmp;
tmp.re = (acc.re * gain);;
tmp.im = (acc.im * gain);;
if(tmp.re > MAX_SOUNDCARDVAL)
tmp.re = MAX_SOUNDCARDVAL;
if(tmp.re < -MAX_SOUNDCARDVAL)
tmp.re = -MAX_SOUNDCARDVAL;
if(tmp.im>MAX_SOUNDCARDVAL)
tmp.im = MAX_SOUNDCARDVAL;
if(tmp.im < -MAX_SOUNDCARDVAL)
tmp.im = -MAX_SOUNDCARDVAL;
pOutBuf[outsamples].re = (qint16)tmp.re;
pOutBuf[outsamples++].im = (qint16)tmp.im;
m_FloatTime += dt; //inc floating pt output time step
IntegerTime = (int)m_FloatTime; //truncate to integer
}
m_FloatTime -= (TYPEREAL)InLength; //move floating time position back for next call
//keeping leftover fraction
//need to copy last SINC_PERIODS input samples in buffer to beginning of buffer
// for FIR wrap around management. j points to last input sample processed
j = InLength;
for(i=0; i<SINC_PERIODS; i++)
m_pInputBuf[i] = m_pInputBuf[j++];
return outsamples; //return number of output samples processed
}
//////////////////////////////////////////////////////////////////////
// Resample InLength samples in pInBuf and place into pOutBuf
// using Rate = input rate / output rate
// !!!! Make sure pOutBuf from caller is large enough to hold all
// the generated samples, especially if up converting !!!!!
// REAL version
//////////////////////////////////////////////////////////////////////
int CFractResampler::Resample( int InLength, TYPEREAL Rate, TYPEREAL* pInBuf, TYPEREAL* pOutBuf)
{
int i;
int j;
int IntegerTime = (int)m_FloatTime; //integer input time accumulator
TYPEREAL dt = Rate; //output delta time as function of input sample time (input rate/output rate)
int outsamples = 0;
TYPEREAL acc;
//copy input samples into buffer starting at position SINC_PERIODS
j = SINC_PERIODS;
for(i=0; i<InLength; i++)
m_pInputBuf[j++].re = pInBuf[i];
//now calculate output samples by looping until end of input buffer
// is reached. The output position is incremented in fractional time
// of input sample time until all the possible input samples are
//processed.
while(IntegerTime < InLength )
{ //convolve sinc function with input samples where sinc
//function is centered at the output fractional time position
acc = 0.0;
for(i=1; i<=SINC_PERIODS; i++)
{
j = IntegerTime + i; //temp integer time position for convolution loop
int sindx = (int)(( (TYPEREAL)j - m_FloatTime) * (TYPEREAL)SINC_PERIOD_PTS );
acc += (m_pInputBuf[j].re * m_pSinc[sindx] );
}
pOutBuf[outsamples++] = acc;
m_FloatTime += dt;
IntegerTime = (int)m_FloatTime;
}
m_FloatTime -= (TYPEREAL)InLength; //move floating time position back for next call
//keeping leftover fraction
//need to copy last SINC_PERIODS input samples in buffer to beginning of buffer
// for FIR wrap around management. j points to last input sample processed
j = InLength;
for(i=0; i<SINC_PERIODS; i++)
m_pInputBuf[i].re = m_pInputBuf[j++].re;
return outsamples;
}
//////////////////////////////////////////////////////////////////////
// Resample InLength samples in pInBuf and place into pOutBuf
// using Rate = input rate / output rate
// !!!! Make sure pOutBuf from caller is large enough to hold all
// the generated samples, especially if up converting !!!!!
// short Integer version
//////////////////////////////////////////////////////////////////////
int CFractResampler::Resample( int InLength, TYPEREAL Rate, TYPEREAL* pInBuf, TYPEMONO16* pOutBuf, TYPEREAL gain)
{
int i;
int j;
int IntegerTime = (int)m_FloatTime; //integer input time accumulator
TYPEREAL dt = Rate; //output delta time as function of input sample time (input rate/output rate)
int outsamples = 0;
TYPEREAL acc;
//copy input samples into buffer starting at position SINC_PERIODS
j = SINC_PERIODS;
for(i=0; i<InLength; i++)
m_pInputBuf[j++].re = pInBuf[i];
//now calculate output samples by looping until end of input buffer
// is reached. The output position is incremented in fractional time
// of input sample time until all the possible input samples are
//processed.
while(IntegerTime < InLength )
{ //convolve sinc function with input samples where sinc
//function is centered at the output fractional time position
acc = 0.0;
for(i=1; i<=SINC_PERIODS; i++)
{
j = IntegerTime + i; //temp integer time position for convolution loop
int sindx = (int)(( (TYPEREAL)j - m_FloatTime) * (TYPEREAL)SINC_PERIOD_PTS );
acc += (m_pInputBuf[j].re * m_pSinc[sindx] );
}
TYPEREAL tmp;
tmp = (acc * gain);;
if(tmp > MAX_SOUNDCARDVAL)
tmp = MAX_SOUNDCARDVAL;
if(tmp < -MAX_SOUNDCARDVAL)
tmp = -MAX_SOUNDCARDVAL;
pOutBuf[outsamples++] = (TYPEMONO16)tmp;
m_FloatTime += dt;
IntegerTime = (int)m_FloatTime;
}
m_FloatTime -= (TYPEREAL)InLength; //move floating time position back for next call
//keeping leftover fraction
//need to copy last SINC_PERIODS input samples in buffer to beginning of buffer
// for FIR wrap around management. j points to last input sample processed
j = InLength;
for(i=0; i<SINC_PERIODS; i++)
m_pInputBuf[i].re = m_pInputBuf[j++].re;
return outsamples;
}
|