File: fractresampler.cpp

package info (click to toggle)
cutesdr 1.20-4
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 2,848 kB
  • sloc: cpp: 18,902; makefile: 21; sh: 5
file content (356 lines) | stat: -rw-r--r-- 13,995 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
//////////////////////////////////////////////////////////////////////
// FractResampler.cpp: implementation of the CFractResampler class.
//
//  This class implements a fractional resampler that can be used to
//convert between different sample rates.  A windowes sinc interpolator
// is used to create samples "in between" input samples.
//
// History:
//	2010-09-15  Initial creation MSW
//	2011-03-27  Initial release
//	2013-07-28  Added single/double precision math macros
/////////////////////////////////////////////////////////////////////

//==========================================================================================
// + + +   This Software is released under the "Simplified BSD License"  + + +
//Copyright 2010 Moe Wheatley. All rights reserved.
//
//Redistribution and use in source and binary forms, with or without modification, are
//permitted provided that the following conditions are met:
//
//   1. Redistributions of source code must retain the above copyright notice, this list of
//	  conditions and the following disclaimer.
//
//   2. Redistributions in binary form must reproduce the above copyright notice, this list
//	  of conditions and the following disclaimer in the documentation and/or other materials
//	  provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY Moe Wheatley ``AS IS'' AND ANY EXPRESS OR IMPLIED
//WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
//FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Moe Wheatley OR
//CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
//SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
//ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//The views and conclusions contained in the software and documentation are those of the
//authors and should not be interpreted as representing official policies, either expressed
//or implied, of Moe Wheatley.
//==========================================================================================

#include "dsp/fractresampler.h"
#include <QDir>
#include <QFile>
#include <QDebug>

//////////////////////////////////////////////////////////////////////
// Local defines
//////////////////////////////////////////////////////////////////////
#ifdef USE_DOUBLE_PRECISION
#define SINC_PERIOD_PTS 10000	//number of points in sinc table between "zero crossings"
								//smaller value increases noise floor
#define SINC_PERIODS 28	//number of input sample periods("zero crossings"-1) in
						//sinc function(should be even)
						//decreasing reduces alias free bandwidth
#else   //if using single precision math assume lightweight CPU and dont worry so much about resample quality
#define SINC_PERIOD_PTS 1000
#define SINC_PERIODS 10
#endif

#define SINC_LENGTH	( (SINC_PERIODS)*SINC_PERIOD_PTS + 1)//number of total points in sinc table

#define MAX_SOUNDCARDVAL 32767.0


//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CFractResampler::CFractResampler()
{
	m_pSinc = NULL;
	m_pInputBuf = NULL;

}

CFractResampler::~CFractResampler()
{
	if(m_pSinc)
		delete m_pSinc;
	if(m_pInputBuf)
		delete m_pInputBuf;
}

//////////////////////////////////////////////////////////////////////
// Initialize resampler memory and create windowed sinc table
// MaxInputSize is the largest number of input samples expected to be processed
//////////////////////////////////////////////////////////////////////
void CFractResampler::Init(int MaxInputSize)
{
int i;
TYPEREAL fi;
TYPEREAL window;
	MaxInputSize += SINC_PERIODS;	//expand buffer size  to include wrap around
	if(NULL == m_pSinc)
		m_pSinc = new  TYPEREAL[SINC_LENGTH];
	if(m_pInputBuf)
		delete m_pInputBuf;
	m_pInputBuf = new TYPECPX[MaxInputSize];
	for(i=0; i<MaxInputSize; i++)
	{
		m_pInputBuf[i].re = 0.0;
		m_pInputBuf[i].im = 0.0;
	}
	for(i=0; i<SINC_LENGTH; i++)
	{	//calc Blackman-Harris window points
		window = (0.35875
				- 0.48829*MCOS( (K_2PI*i)/(SINC_LENGTH-1) )
				+ 0.14128*MCOS( (2.0*K_2PI*i)/(SINC_LENGTH-1) )
				- 0.01168*MCOS( (3.0*K_2PI*i)/(SINC_LENGTH-1) ) );
		//calculate sin(x)/x    sinc point * window
		fi = K_PI*(TYPEREAL)(i - SINC_LENGTH/2)/(TYPEREAL)SINC_PERIOD_PTS ;
		if(i != SINC_LENGTH/2)
			m_pSinc[i] = window * (TYPEREAL)MSIN( (TYPEREAL)fi )/(TYPEREAL)fi;
		else
			m_pSinc[i] = 1.0;

	}
	m_FloatTime = 0.0;		//init floating point time accumulator

#if 0		//debug hack to write m_pSinc to a file for analysis
	QDir::setCurrent("d:/");
	QFile File;
	File.setFileName("Sinc.txt");
	if(File.open(QIODevice::WriteOnly))
	{
		qDebug()<<"file Opened OK";
		char Buf[30000];
		for( i=0; i<SINC_LENGTH; i++)
		{
			sprintf( Buf, "%19.12g\r\n", m_pSinc[i]);
			File.write(Buf);
		}
	}
	else
		qDebug()<<"file Failed to Open";

#endif
}

//////////////////////////////////////////////////////////////////////
// Resample InLength samples in pInBuf and place into pOutBuf
// using Rate = input rate / output rate
//   !!!! Make sure pOutBuf from caller is large enough to hold all
//  the generated samples, especially if up converting  !!!!!
// COMPLEX version
//////////////////////////////////////////////////////////////////////
int CFractResampler::Resample( int InLength, TYPEREAL Rate, TYPECPX* pInBuf, TYPECPX* pOutBuf)
{
int i;
int j;
int IntegerTime = (int)m_FloatTime;	//integer input time accumulator
TYPEREAL dt = Rate;	//output delta time as function of input sample time (input rate/output rate)
int outsamples = 0;
TYPECPX acc;

	//copy input samples into buffer starting at position SINC_PERIODS
	j = SINC_PERIODS;
	for(i=0; i<InLength; i++)
		m_pInputBuf[j++] = pInBuf[i];
	//now calculate output samples by looping until end of input buffer
	// is reached.  The output position is incremented in fractional time
	// of input sample time until all the possible input samples are
	//processed.
	while(IntegerTime < InLength )
	{	//convolve sinc function with input samples where sinc
		//function is centered at the output fractional time position
		acc.re = 0.0; acc.im = 0.0;
		for(i=1; i<=SINC_PERIODS; i++)
		{
			j = IntegerTime + i;	//temp integer time position for convolution loop
			int sindx =  (int)(( (TYPEREAL)j - m_FloatTime) * (TYPEREAL)SINC_PERIOD_PTS );
			acc.re += (m_pInputBuf[j].re * m_pSinc[sindx] );
			acc.im += (m_pInputBuf[j].im * m_pSinc[sindx] );
		}
		pOutBuf[outsamples++] = acc;
		m_FloatTime += dt;		//inc floating pt output time step
		IntegerTime = (int)m_FloatTime;	//truncate to integer
	}
	m_FloatTime -= (TYPEREAL)InLength;	//move floating time position back for next call
										//keeping leftover fraction
	//need to copy last SINC_PERIODS input samples in buffer to beginning of buffer
	// for FIR wrap around management. j points to last input sample processed
	j = InLength;
	for(i=0; i<SINC_PERIODS; i++)
		m_pInputBuf[i] = m_pInputBuf[j++];
	return outsamples;		//return number of output samples processed
}


//////////////////////////////////////////////////////////////////////
// Resample InLength samples in pInBuf and place into pOutBuf
// using Rate = input rate / output rate
//   !!!! Make sure pOutBuf from caller is large enough to hold all
//  the generated samples, especially if up converting  !!!!!
// stereo Integer version
//////////////////////////////////////////////////////////////////////
int CFractResampler::Resample( int InLength, TYPEREAL Rate, TYPECPX* pInBuf, TYPESTEREO16* pOutBuf, TYPEREAL gain)
{
int i;
int j;
int IntegerTime = (int)m_FloatTime;	//integer input time accumulator
TYPEREAL dt = Rate;	//output delta time as function of input sample time (input rate/output rate)
int outsamples = 0;
TYPECPX acc;

	//copy input samples into buffer starting at position SINC_PERIODS
	j = SINC_PERIODS;
	for(i=0; i<InLength; i++)
	{
		m_pInputBuf[j++] = pInBuf[i];
	}
	//now calculate output samples by looping until end of input buffer
	// is reached.  The output position is incremented in fractional time
	// of input sample time until all the possible input samples are
	//processed.
	while(IntegerTime < InLength )
	{	//convolve sinc function with input samples where sinc
		//function is centered at the output fractional time position
		acc.re = 0.0; acc.im = 0.0;
		for(i=1; i<=SINC_PERIODS; i++)
		{
			j = IntegerTime + i;	//temp integer time position for convolution loop
			int sindx =  (int)(( (TYPEREAL)j - m_FloatTime) * (TYPEREAL)SINC_PERIOD_PTS );
			acc.re += (m_pInputBuf[j].re * m_pSinc[sindx] );
			acc.im += (m_pInputBuf[j].im * m_pSinc[sindx] );
		}
		TYPECPX tmp;
		tmp.re = (acc.re * gain);;
		tmp.im = (acc.im * gain);;
		if(tmp.re > MAX_SOUNDCARDVAL)
			tmp.re = MAX_SOUNDCARDVAL;
		if(tmp.re < -MAX_SOUNDCARDVAL)
			tmp.re = -MAX_SOUNDCARDVAL;
		if(tmp.im>MAX_SOUNDCARDVAL)
			tmp.im = MAX_SOUNDCARDVAL;
		if(tmp.im < -MAX_SOUNDCARDVAL)
			tmp.im = -MAX_SOUNDCARDVAL;
		pOutBuf[outsamples].re = (qint16)tmp.re;
		pOutBuf[outsamples++].im = (qint16)tmp.im;

		m_FloatTime += dt;	//inc floating pt output time step
		IntegerTime = (int)m_FloatTime;	//truncate to integer
	}
	m_FloatTime -= (TYPEREAL)InLength;	//move floating time position back for next call
										//keeping leftover fraction
	//need to copy last SINC_PERIODS input samples in buffer to beginning of buffer
	// for FIR wrap around management. j points to last input sample processed
	j = InLength;
	for(i=0; i<SINC_PERIODS; i++)
		m_pInputBuf[i] = m_pInputBuf[j++];
	return outsamples;		//return number of output samples processed
}

//////////////////////////////////////////////////////////////////////
// Resample InLength samples in pInBuf and place into pOutBuf
// using Rate = input rate / output rate
//   !!!! Make sure pOutBuf from caller is large enough to hold all
//  the generated samples, especially if up converting  !!!!!
// REAL version
//////////////////////////////////////////////////////////////////////
int CFractResampler::Resample( int InLength, TYPEREAL Rate, TYPEREAL* pInBuf, TYPEREAL* pOutBuf)
{
int i;
int j;
int IntegerTime = (int)m_FloatTime;	//integer input time accumulator
TYPEREAL dt = Rate;	//output delta time as function of input sample time (input rate/output rate)
int outsamples = 0;
TYPEREAL acc;

	//copy input samples into buffer starting at position SINC_PERIODS
	j = SINC_PERIODS;
	for(i=0; i<InLength; i++)
		m_pInputBuf[j++].re = pInBuf[i];
	//now calculate output samples by looping until end of input buffer
	// is reached.  The output position is incremented in fractional time
	// of input sample time until all the possible input samples are
	//processed.
	while(IntegerTime < InLength )
	{	//convolve sinc function with input samples where sinc
		//function is centered at the output fractional time position
		acc = 0.0;
		for(i=1; i<=SINC_PERIODS; i++)
		{
			j = IntegerTime + i;	//temp integer time position for convolution loop
			int sindx =  (int)(( (TYPEREAL)j - m_FloatTime) * (TYPEREAL)SINC_PERIOD_PTS );
			acc += (m_pInputBuf[j].re * m_pSinc[sindx] );
		}
		pOutBuf[outsamples++] = acc;
		m_FloatTime += dt;
		IntegerTime = (int)m_FloatTime;
	}
	m_FloatTime -= (TYPEREAL)InLength;	//move floating time position back for next call
										//keeping leftover fraction
	//need to copy last SINC_PERIODS input samples in buffer to beginning of buffer
	// for FIR wrap around management. j points to last input sample processed
	j = InLength;
	for(i=0; i<SINC_PERIODS; i++)
		m_pInputBuf[i].re = m_pInputBuf[j++].re;
	return outsamples;
}

//////////////////////////////////////////////////////////////////////
// Resample InLength samples in pInBuf and place into pOutBuf
// using Rate = input rate / output rate
//   !!!! Make sure pOutBuf from caller is large enough to hold all
//  the generated samples, especially if up converting  !!!!!
// short Integer version
//////////////////////////////////////////////////////////////////////
int CFractResampler::Resample( int InLength, TYPEREAL Rate, TYPEREAL* pInBuf, TYPEMONO16* pOutBuf, TYPEREAL gain)
{
int i;
int j;
int IntegerTime = (int)m_FloatTime;	//integer input time accumulator
TYPEREAL dt = Rate;	//output delta time as function of input sample time (input rate/output rate)
int outsamples = 0;
TYPEREAL acc;

	//copy input samples into buffer starting at position SINC_PERIODS
	j = SINC_PERIODS;
	for(i=0; i<InLength; i++)
		m_pInputBuf[j++].re = pInBuf[i];
	//now calculate output samples by looping until end of input buffer
	// is reached.  The output position is incremented in fractional time
	// of input sample time until all the possible input samples are
	//processed.
	while(IntegerTime < InLength )
	{	//convolve sinc function with input samples where sinc
		//function is centered at the output fractional time position
		acc = 0.0;
		for(i=1; i<=SINC_PERIODS; i++)
		{
			j = IntegerTime + i;	//temp integer time position for convolution loop
			int sindx =  (int)(( (TYPEREAL)j - m_FloatTime) * (TYPEREAL)SINC_PERIOD_PTS );
			acc += (m_pInputBuf[j].re * m_pSinc[sindx] );
		}
		TYPEREAL tmp;
		tmp = (acc * gain);;
		if(tmp > MAX_SOUNDCARDVAL)
			tmp = MAX_SOUNDCARDVAL;
		if(tmp < -MAX_SOUNDCARDVAL)
			tmp = -MAX_SOUNDCARDVAL;
		pOutBuf[outsamples++] = (TYPEMONO16)tmp;

		m_FloatTime += dt;
		IntegerTime = (int)m_FloatTime;
	}
	m_FloatTime -= (TYPEREAL)InLength;	//move floating time position back for next call
										//keeping leftover fraction
	//need to copy last SINC_PERIODS input samples in buffer to beginning of buffer
	// for FIR wrap around management. j points to last input sample processed
	j = InLength;
	for(i=0; i<SINC_PERIODS; i++)
		m_pInputBuf[i].re = m_pInputBuf[j++].re;
	return outsamples;
}