1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
// fskdemod.cpp: implementation of the CFskDemod class.
//
// This class takes I/Q baseband data and performs
// FSK demodulation and basic DSC decode into raw bytes
// History:
// 2012-10-19 Initial creation MSW
// 2017-09-17 Modified MSW
//////////////////////////////////////////////////////////////////////
#include "fskdemod.h"
#include "gui/testbench.h"
#include "dsp/datatypes.h"
#include "gui/chatdialog.h"
#include "dsp/fircoef.h"
#include <QDebug>
#define SHIFT_FREQ 170.0
//ATC time constants in seconds
#define ATTACK_TIMECONST 0.025
#define DECAY_TIMECONST 0.3
////////////////////////////////////////////////////////////////////////////////
//index to table is 10 bit DSC symbol to read.
// value in table is 255 if not a valid character
//else returns 7 bit character value for 10 bit symbol.
// lsb is first data bit in transmission order
const quint8 CHARTBL[0x400] = {
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0000 to 000F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0010 to 001F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0020 to 002F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0030 to 003F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0040 to 004F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0050 to 005F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0060 to 006F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,127, //0070 to 007F
255,255,255,255,255,255,255, 7,255,255,255, 11,255, 13, 14,255, //0080 to 008F
255,255,255, 19,255, 21, 22,255,255, 25, 26,255, 28,255,255,255, //0090 to 009F
255,255,255, 35,255, 37, 38,255,255, 41, 42,255, 44,255,255,255, //00A0 to 00AF
255, 49, 50,255, 52,255,255,255, 56,255,255,255,255,255,255,255, //00B0 to 00BF
255,255,255, 67,255, 69, 70,255,255, 73, 74,255, 76,255,255,255, //00C0 to 00CF
255, 81, 82,255, 84,255,255,255, 88,255,255,255,255,255,255,255, //00D0 to 00DF
255, 97, 98,255,100,255,255,255,104,255,255,255,255,255,255,255, //00E0 to 00EF
112,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //00F0 to 00FF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0100 to 010F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 31, //0110 to 011F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 47, //0120 to 012F
255,255,255,255,255,255,255, 55,255,255,255, 59,255, 61, 62,255, //0130 to 013F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 79, //0140 to 014F
255,255,255,255,255,255,255, 87,255,255,255, 91,255, 93, 94,255, //0150 to 015F
255,255,255,255,255,255,255,103,255,255,255,107,255,109,110,255, //0160 to 016F
255,255,255,115,255,117,118,255,255,121,122,255,124,255,255,255, //0170 to 017F
255, 1, 2,255, 4,255,255,255, 8,255,255,255,255,255,255,255, //0180 to 018F
16,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0190 to 019F
32,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //01A0 to 01AF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //01B0 to 01BF
64,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //01C0 to 01CF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //01D0 to 01DF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //01E0 to 01EF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //01F0 to 01FF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0200 to 020F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0210 to 021F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0220 to 022F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 63, //0230 to 023F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0240 to 024F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 95, //0250 to 025F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,111, //0260 to 026F
255,255,255,255,255,255,255,119,255,255,255,123,255,125,126,255, //0270 to 027F
255,255,255, 3,255, 5, 6,255,255, 9, 10,255, 12,255,255,255, //0280 to 028F
255, 17, 18,255, 20,255,255,255, 24,255,255,255,255,255,255,255, //0290 to 029F
255, 33, 34,255, 36,255,255,255, 40,255,255,255,255,255,255,255, //02A0 to 02AF
48,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //02B0 to 02BF
255, 65, 66,255, 68,255,255,255, 72,255,255,255,255,255,255,255, //02C0 to 02CF
80,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //02D0 to 02DF
96,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //02E0 to 02EF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //02F0 to 02FF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, 15, //0300 to 030F
255,255,255,255,255,255,255, 23,255,255,255, 27,255, 29, 30,255, //0310 to 031F
255,255,255,255,255,255,255, 39,255,255,255, 43,255, 45, 46,255, //0320 to 032F
255,255,255, 51,255, 53, 54,255,255, 57, 58,255, 60,255,255,255, //0330 to 033F
255,255,255,255,255,255,255, 71,255,255,255, 75,255, 77, 78,255, //0340 to 034F
255,255,255, 83,255, 85, 86,255,255, 89, 90,255, 92,255,255,255, //0350 to 035F
255,255,255, 99,255,101,102,255,255,105,106,255,108,255,255,255, //0360 to 036F
255,113,114,255,116,255,255,255,120,255,255,255,255,255,255,255, //0370 to 037F
0,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0380 to 038F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //0390 to 039F
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //03A0 to 03AF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //03B0 to 03BF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //03C0 to 03CF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //03D0 to 03DF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //03E0 to 03EF
255,255,255,255,255,255,255,255,255,255,255,255,255,255,255,255, //03F0 to 03FF
};
//DSC decoder states
#define STATE_PHASEDET 0
#define STATE_DECODEDX 1
#define STATE_DECODERX 2
#define STATE_ECCDX 3
#define STATE_ECCRX 4
#define MSG_TIMEOUT 70 //number of RX/DX characters to read before giving up
/////////////////////////////////////////////////////////////////////////////////
// Construct FSK demod object
/////////////////////////////////////////////////////////////////////////////////
CFskDemod::CFskDemod(TYPEREAL samplerate) : m_SampleRate(samplerate)
{
qDebug()<<"FSK Rate = "<<m_SampleRate;
TYPEREAL PhzInc = K_2PI*SHIFT_FREQ/(2.0*m_SampleRate); // FreqShift/2
m_MarkOsc1.re = 1.0; //initialize oscillator unit vectors that will get rotated
m_MarkOsc1.im = 0.0;
m_SpaceOsc1.re = 1.0;
m_SpaceOsc1.im = 0.0;
m_MarkOscCos = cos(-PhzInc);
m_MarkOscSin = sin(-PhzInc);
m_SpaceOscCos = cos(PhzInc);
m_SpaceOscSin = sin(PhzInc);
//init integrators
m_MarkIntegratorIndex = 0;
m_SpaceIntegratorIndex = 0;
for(int i=0; i<INTEGRATOR_BUF_LEN; i++)
{
m_MarkIntegrationBuf[i].re = 0.0;
m_MarkIntegrationBuf[i].im = 0.0;
m_SpaceIntegrationBuf[i].re = 0.0;
m_SpaceIntegrationBuf[i].im = 0.0;
}
//calculate ATC dual time constant filter values.
m_AttackAlpha = (1.0-exp(-1.0/(m_SampleRate*ATTACK_TIMECONST)) );
m_DecayAlpha = (1.0-exp(-1.0/(m_SampleRate*DECAY_TIMECONST)) );
m_MarkAve = 0.0;
m_SpaceAve = 0.0;
//Init LP filter for complex input. abt +-250Hz
m_Fir.InitConstFir(FSK1_LENGTH, FSK1_COEF, FSK1_COEF, m_SampleRate);
//Init Post data IIR LP filter
m_OutIir.InitLP(150.0, 0.707, m_SampleRate);
//create Hi-Q resonator at the bit rate to recover bit sync position Q==200
m_BitSyncFilter.InitBP(100.0, 200.0, m_SampleRate);
//init some decoder variables
m_RxShiftReg = 0;
m_RxBitPos = 0;
m_RxDecodeState = STATE_PHASEDET;
m_RxDecodeTimer = 0;
for(int i=0; i<16; i++)
m_ShiftReg[i] = 0;
//just for testing, create 1700Hz osc for shifting baseband IQ into audio range for soundcard
m_AudioShiftOsc1.re = 1.0; //initialize interocitor unit vectors that will get rotated
m_AudioShiftOsc1.im = 0.0;
m_AudioShiftOscCos = cos(K_2PI*1700.0/m_SampleRate);
m_AudioShiftOscSin = sin(K_2PI*1700.0/m_SampleRate);
}
/////////////////////////////////////////////////////////////////////////////////
// FSK demod Process 'InLength' samples of 'pInData' into 'pOutData'
/////////////////////////////////////////////////////////////////////////////////
int CFskDemod::ProcessData(int InLength, TYPECPX* pInData, TYPECPX* pOutData)
{
TYPECPX cxIn;
TYPECPX cxtmp;
TYPEREAL Mpwr;
TYPEREAL Spwr;
TYPEREAL OscGn;
TYPECPX Osc;
//lowpass Filter +/-250Hz
m_Fir.ProcessFilter(InLength, pInData, pInData);
//g_pTestBench->DisplayData(InLength, pInData, m_SampleRate, PROFILE_2);
for(int i=0; i<InLength; i++)
{
cxIn = pInData[i]; //make copy of complex I/Q input sample
//First Process MARK('1") signal path
//create -85Hz Mark correlator Osc samples using quadrature oscillator
Osc.re = m_MarkOsc1.re * m_MarkOscCos - m_MarkOsc1.im * m_MarkOscSin;
Osc.im = m_MarkOsc1.im * m_MarkOscCos + m_MarkOsc1.re * m_MarkOscSin;
OscGn = 1.95 - (m_MarkOsc1.re*m_MarkOsc1.re + m_MarkOsc1.im*m_MarkOsc1.im);
m_MarkOsc1.re = OscGn * Osc.re; //keeps amplitude bounded
m_MarkOsc1.im = OscGn * Osc.im;
//
//Cpx multiply Input sample by Mark shift frequency(bring -85Hz to 0Hz)
cxtmp.re = ((cxIn.re * Osc.re) + (cxIn.im * Osc.im));
cxtmp.im = ((cxIn.im * Osc.re) - (cxIn.re * Osc.im));
//place shifted Mark I/Q sample in Circular Integrator Buffer
//that is one symbol time deep
m_MarkIntegrationBuf[m_MarkIntegratorIndex++] = cxtmp;
if(m_MarkIntegratorIndex >= INTEGRATOR_BUF_LEN)
m_MarkIntegratorIndex = 0;
//integrate over the last 'INTEGRATOR_BUF_LEN' samples
cxtmp.re = 0.0; cxtmp.im = 0.0;
for(int j=0; j<INTEGRATOR_BUF_LEN; j++)
{
cxtmp.re += m_MarkIntegrationBuf[j].re;
cxtmp.im += m_MarkIntegrationBuf[j].im;
}
//calc correlation energy in Mark signal
Mpwr = sqrt(cxtmp.re*cxtmp.re + cxtmp.im*cxtmp.im);
//create average Mark energy with dual time constant agc for ATC
if(Mpwr>m_MarkAve) //if magnitude is rising (use m_AttackAlpha time constant)
m_MarkAve = (1.0-m_AttackAlpha)*m_MarkAve + m_AttackAlpha*Mpwr;
else //else magnitude is falling (use m_DecayAlpha time constant)
m_MarkAve = (1.0-m_DecayAlpha)*m_MarkAve + m_DecayAlpha*Mpwr;
//Now Process SPACE('0') signal path
//create +85Hz Space correlator Osc samples using quadrature oscillator
Osc.re = m_SpaceOsc1.re * m_SpaceOscCos - m_SpaceOsc1.im * m_SpaceOscSin;
Osc.im = m_SpaceOsc1.im * m_SpaceOscCos + m_SpaceOsc1.re * m_SpaceOscSin;
OscGn = 1.95 - (m_SpaceOsc1.re*m_SpaceOsc1.re + m_SpaceOsc1.im*m_SpaceOsc1.im);
m_SpaceOsc1.re = OscGn * Osc.re; //keeps amplitude bounded
m_SpaceOsc1.im = OscGn * Osc.im;
//Cpx multiply Input sample by Space shift frequency(bring +85Hz to 0Hz)
cxtmp.re = ((cxIn.re * Osc.re) + (cxIn.im * Osc.im));
cxtmp.im = ((cxIn.im * Osc.re) - (cxIn.re * Osc.im));
//place shifted Mark I/Q sample in Circular Integrator Buffer
//that is one symbol time deep
m_SpaceIntegrationBuf[m_SpaceIntegratorIndex++] = cxtmp;
if(m_SpaceIntegratorIndex>=INTEGRATOR_BUF_LEN)
m_SpaceIntegratorIndex = 0;
//integrate over the last 'INTEGRATOR_BUF_LEN' samples
cxtmp.re = 0.0; cxtmp.im = 0.0;
for(int j=0; j<INTEGRATOR_BUF_LEN; j++)
{
cxtmp.re += m_SpaceIntegrationBuf[j].re;
cxtmp.im += m_SpaceIntegrationBuf[j].im;
}
//calc correlation energy in Space signal
Spwr = sqrt(cxtmp.re*cxtmp.re + cxtmp.im*cxtmp.im);
//create average Space energy with dual time constant agc for ATC
if(Spwr>m_SpaceAve) //if magnitude is rising (use m_AttackAlpha time constant)
m_SpaceAve = (1.0-m_AttackAlpha)*m_SpaceAve + m_AttackAlpha*Spwr;
else //else magnitude is falling (use m_DecayAlpha time constant)
m_SpaceAve = (1.0-m_DecayAlpha)*m_SpaceAve + m_DecayAlpha*Spwr;
//calculate mark-space difference and shift by ATC threshold value
//
m_Outbuf[i] = (Mpwr - Spwr + m_SpaceAve/2.0 - m_MarkAve/2.0);
//perform post filter 1 sample at a time in this loop(should be done before ATC?)
m_OutIir.ProcessFilter(1, &m_Outbuf[i], &m_Outbuf[i]);
//create absolute value version of output to use in bit sync algorithm
m_SyncSignal[i] = fabs(m_Outbuf[i]);
}
//now Create Bit sync signal with High Q Resonator IIR BP Filter
//using squared magnitude of data. Positive peak of this signal
//correspondes to the maximum bit energy position so good place to sample
m_BitSyncFilter.ProcessFilter(InLength, m_SyncSignal, m_SyncSignal);
for(int i=0; i<InLength; i++)
{
//the best bit sync position is at the positive peak of the m_SyncSignal waveform
TYPEREAL CurrentSlope = m_SyncSignal[i] - m_LastSync; //current slope
//see if at the top peak of the sync waveform(slope changes from pos to neg)
if( (CurrentSlope < 0.0) && (m_LastSyncSlope >= 0.0) )
{ //are at sample time so use previous bit time value since we are one sample behind in sync position
ProcessNewDataBit( (m_LastData>0) ); //go process new DSC bit
}
m_LastSync = m_SyncSignal[i]; //save previous states
m_LastSyncSlope = CurrentSlope;
m_LastData = m_Outbuf[i];
pOutData[i].im = m_Outbuf[i]/10.0; //use pInData as debug output buf for display
pOutData[i].re = m_SyncSignal[i]/3.0; //use pInData as debug output buf for display
}
//g_pTestBench->DisplayData(InLength, pOutData, m_SampleRate, PROFILE_3);
//for testing, create 1700Hz shifted copy of IQ data to get sent to soundcard
for(int i=0; i<InLength; i++)
{
cxIn = pInData[i]; //make copy of complex I/Q input sample
//create 1700Hz Osc samples using quadrature oscillator
Osc.re = m_AudioShiftOsc1.re * m_AudioShiftOscCos - m_AudioShiftOsc1.im * m_AudioShiftOscSin;
Osc.im = m_AudioShiftOsc1.im * m_AudioShiftOscCos + m_AudioShiftOsc1.re * m_AudioShiftOscSin;
OscGn = 1.95 - (m_AudioShiftOsc1.re*m_AudioShiftOsc1.re + m_AudioShiftOsc1.im*m_AudioShiftOsc1.im);
m_AudioShiftOsc1.re = OscGn * Osc.re; //keeps amplitude bounded
m_AudioShiftOsc1.im = OscGn * Osc.im;
//
//Cpx multiply Input sample by audio frequency(bring baseband up to 1700Hz)
pOutData[i].re = ( (cxIn.re * Osc.re) + (cxIn.im * Osc.im) );
pOutData[i].im = ( (cxIn.im * Osc.re) - (cxIn.re * Osc.im) );
}
return InLength;
}
/////////////////////////////////////////////////////////////////////////////////
// FSK demod Process 'InLength' samples of 'pInData' into 'pOutData'
/////////////////////////////////////////////////////////////////////////////////
int CFskDemod::ProcessData(int InLength, TYPECPX* pInData, TYPEREAL* pOutData)
{
TYPECPX cxIn;
TYPECPX cxtmp;
TYPEREAL Mpwr;
TYPEREAL Spwr;
TYPEREAL OscGn;
TYPECPX Osc;
//lowpass Filter +/-250Hz
m_Fir.ProcessFilter(InLength, pInData, pInData);
//g_pTestBench->DisplayData(InLength, pInData, m_SampleRate, PROFILE_2);
for(int i=0; i<InLength; i++)
{
cxIn = pInData[i]; //make copy of complex I/Q input sample
//First Process MARK('1") signal path
//create -85Hz Mark correlator Osc samples using quadrature oscillator
Osc.re = m_MarkOsc1.re * m_MarkOscCos - m_MarkOsc1.im * m_MarkOscSin;
Osc.im = m_MarkOsc1.im * m_MarkOscCos + m_MarkOsc1.re * m_MarkOscSin;
OscGn = 1.95 - (m_MarkOsc1.re*m_MarkOsc1.re + m_MarkOsc1.im*m_MarkOsc1.im);
m_MarkOsc1.re = OscGn * Osc.re; //keeps amplitude bounded
m_MarkOsc1.im = OscGn * Osc.im;
//
//Cpx multiply Input sample by Mark shift frequency(bring -85Hz to 0Hz)
cxtmp.re = ((cxIn.re * Osc.re) + (cxIn.im * Osc.im));
cxtmp.im = ((cxIn.im * Osc.re) - (cxIn.re * Osc.im));
//place shifted Mark I/Q sample in Circular Integrator Buffer
//that is one symbol time deep
m_MarkIntegrationBuf[m_MarkIntegratorIndex++] = cxtmp;
if(m_MarkIntegratorIndex >= INTEGRATOR_BUF_LEN)
m_MarkIntegratorIndex = 0;
//integrate over the last 'INTEGRATOR_BUF_LEN' samples
cxtmp.re = 0.0; cxtmp.im = 0.0;
for(int j=0; j<INTEGRATOR_BUF_LEN; j++)
{
cxtmp.re += m_MarkIntegrationBuf[j].re;
cxtmp.im += m_MarkIntegrationBuf[j].im;
}
//calc correlation energy in Mark signal
Mpwr = sqrt(cxtmp.re*cxtmp.re + cxtmp.im*cxtmp.im);
//create average Mark energy with dual time constant agc for ATC
if(Mpwr>m_MarkAve) //if magnitude is rising (use m_AttackAlpha time constant)
m_MarkAve = (1.0-m_AttackAlpha)*m_MarkAve + m_AttackAlpha*Mpwr;
else //else magnitude is falling (use m_DecayAlpha time constant)
m_MarkAve = (1.0-m_DecayAlpha)*m_MarkAve + m_DecayAlpha*Mpwr;
//Now Process SPACE('0') signal path
//create +85Hz Space correlator Osc samples using quadrature oscillator
Osc.re = m_SpaceOsc1.re * m_SpaceOscCos - m_SpaceOsc1.im * m_SpaceOscSin;
Osc.im = m_SpaceOsc1.im * m_SpaceOscCos + m_SpaceOsc1.re * m_SpaceOscSin;
OscGn = 1.95 - (m_SpaceOsc1.re*m_SpaceOsc1.re + m_SpaceOsc1.im*m_SpaceOsc1.im);
m_SpaceOsc1.re = OscGn * Osc.re; //keeps amplitude bounded
m_SpaceOsc1.im = OscGn * Osc.im;
//Cpx multiply Input sample by Space shift frequency(bring +85Hz to 0Hz)
cxtmp.re = ((cxIn.re * Osc.re) + (cxIn.im * Osc.im));
cxtmp.im = ((cxIn.im * Osc.re) - (cxIn.re * Osc.im));
//place shifted Mark I/Q sample in Circular Integrator Buffer
//that is one symbol time deep
m_SpaceIntegrationBuf[m_SpaceIntegratorIndex++] = cxtmp;
if(m_SpaceIntegratorIndex>=INTEGRATOR_BUF_LEN)
m_SpaceIntegratorIndex = 0;
//integrate over the last 'INTEGRATOR_BUF_LEN' samples
cxtmp.re = 0.0; cxtmp.im = 0.0;
for(int j=0; j<INTEGRATOR_BUF_LEN; j++)
{
cxtmp.re += m_SpaceIntegrationBuf[j].re;
cxtmp.im += m_SpaceIntegrationBuf[j].im;
}
//calc correlation energy in Space signal
Spwr = sqrt(cxtmp.re*cxtmp.re + cxtmp.im*cxtmp.im);
//create average Space energy with dual time constant agc for ATC
if(Spwr>m_SpaceAve) //if magnitude is rising (use m_AttackAlpha time constant)
m_SpaceAve = (1.0-m_AttackAlpha)*m_SpaceAve + m_AttackAlpha*Spwr;
else //else magnitude is falling (use m_DecayAlpha time constant)
m_SpaceAve = (1.0-m_DecayAlpha)*m_SpaceAve + m_DecayAlpha*Spwr;
//calculate mark-space difference and shift by ATC threshold value
//
m_Outbuf[i] = (Mpwr - Spwr + m_SpaceAve/2.0 - m_MarkAve/2.0);
//perform post filter 1 sample at a time in this loop(should be done before ATC?)
m_OutIir.ProcessFilter(1, &m_Outbuf[i], &m_Outbuf[i]);
//create absolute value version of output to use in bit sync algorithm
m_SyncSignal[i] = fabs(m_Outbuf[i]);
}
//now Create Bit sync signal with High Q Resonator IIR BP Filter
//using squared magnitude of data. Positive peak of this signal
//correspondes to the maximum bit energy position so good place to sample
m_BitSyncFilter.ProcessFilter(InLength, m_SyncSignal, m_SyncSignal);
for(int i=0; i<InLength; i++)
{
//the best bit sync position is at the positive peak of the m_SyncSignal waveform
TYPEREAL CurrentSlope = m_SyncSignal[i] - m_LastSync; //current slope
//see if at the top peak of the sync waveform(slope changes from pos to neg)
if( (CurrentSlope < 0.0) && (m_LastSyncSlope >= 0.0) )
{ //are at sample time so use previous bit time value since we are one sample behind in sync position
ProcessNewDataBit( (m_LastData>0) ); //go process new DSC bit
}
m_LastSync = m_SyncSignal[i]; //save previous states
m_LastSyncSlope = CurrentSlope;
m_LastData = m_Outbuf[i];
}
//g_pTestBench->DisplayData(InLength, pOutData, m_SampleRate, PROFILE_3);
for(int i=0; i<InLength; i++)
{
pOutData[i] = pInData[i].re;
}
return InLength;
}
/////////////////////////////////////////////////////////////////////////////////
// DSC state decoder to find bit phase position and get raw characters.
/////////////////////////////////////////////////////////////////////////////////
void CFskDemod::ProcessNewDataBit(bool Bit)
{
quint8 ch;
int i;
int dxphzcnt = 0;
int rxphzcnt = 0;
//shift in new data bit into 160 bit shift register consisting of 16 ten bit shift registers
for(i=0; i<16; i++)
{
m_ShiftReg[i] >>= 1;
if(i<15)
{
if(m_ShiftReg[i+1] & 1) //shift in bit from upper register
m_ShiftReg[i] |= 0x0200;
}
else
{
if(Bit)
m_ShiftReg[15] |= 0x0200;
}
}
// go through all Rx Phase positions and count matches to Rx phase characters
//this will detect a phase sequence even if already decoding a msg.
if(111 == CHARTBL[ m_ShiftReg[1] ]) rxphzcnt++;
if(110 == CHARTBL[ m_ShiftReg[3] ]) rxphzcnt++;
if(109 == CHARTBL[ m_ShiftReg[5] ]) rxphzcnt++;
if(108 == CHARTBL[ m_ShiftReg[7] ]) rxphzcnt++;
if(107 == CHARTBL[ m_ShiftReg[9] ]) rxphzcnt++;
if(106 == CHARTBL[ m_ShiftReg[11] ]) rxphzcnt++;
if(105 == CHARTBL[ m_ShiftReg[13] ]) rxphzcnt++;
if(104 == CHARTBL[ m_ShiftReg[15] ]) rxphzcnt++;
if(125 == CHARTBL[ m_ShiftReg[0] ]) dxphzcnt++;
if(125 == CHARTBL[ m_ShiftReg[2] ]) dxphzcnt++;
if(125 == CHARTBL[ m_ShiftReg[4] ]) dxphzcnt++;
if(125 == CHARTBL[ m_ShiftReg[6] ]) dxphzcnt++;
if(125 == CHARTBL[ m_ShiftReg[8] ]) dxphzcnt++;
if(125 == CHARTBL[ m_ShiftReg[10] ]) dxphzcnt++;
if( (rxphzcnt>=3) || ((rxphzcnt==2)&&(dxphzcnt>=1)) || ((rxphzcnt==1)&&(dxphzcnt>=2)))
{
//qDebug()<<"Got Phase Sequence pattern";
m_DxBufIndex = 0;
m_RxBufIndex = 0;
m_DxBuf[m_DxBufIndex++] = CHARTBL[ m_ShiftReg[12] ]; //read in first A Dx field
m_DxBuf[m_DxBufIndex++] = CHARTBL[ m_ShiftReg[14] ]; //read in second A Dx field
m_RxDecodeState = STATE_DECODEDX;
m_RxBitPos = -10; //set sync bit position so shifts in next full symbol before executing decode state machine
m_Ecc = 0;
m_RxDecodeTimer = MSG_TIMEOUT;
}
if(0==m_RxBitPos)
{
if(m_RxDecodeTimer > 0) //dec msg timeout
{
m_RxDecodeTimer--;
}
else
{
m_RxDecodeState = STATE_PHASEDET;
}
switch( m_RxDecodeState)
{
case STATE_PHASEDET: //looking for initial phazing position so do nothing
break;
case STATE_DECODEDX: //here to store next Dx character into
ch = CHARTBL[ m_ShiftReg[15] ];
m_DxBuf[m_DxBufIndex++] = ch;
if(m_DxBufIndex>2) //only need to save last 3 Dx characters
m_DxBufIndex = 0;
m_RxDecodeState = STATE_DECODERX;
break;
case STATE_DECODERX:
ch = CHARTBL[ m_ShiftReg[15] ];
if(ch!=255) //if Rx char is ok use it
m_RxBuf[m_RxBufIndex] = ch;
else //else use Dx char
m_RxBuf[m_RxBufIndex] = m_DxBuf[m_DxBufIndex];
if(1==m_RxBufIndex) //if second 'A' position is error then use first char 'A'
{
if(255 == m_RxBuf[1] )
m_RxBuf[1] = m_RxBuf[0];
m_Ecc = m_RxBuf[1]; //init ecc value
}
else
m_Ecc ^= m_RxBuf[m_RxBufIndex];
if( (117==m_RxBuf[m_RxBufIndex]) || (122==m_RxBuf[m_RxBufIndex]) || (127==m_RxBuf[m_RxBufIndex]) )
{
m_RxDecodeState = STATE_ECCDX;
}
else
{
m_RxDecodeState = STATE_DECODEDX;
}
m_RxBufIndex++;
break;
case STATE_ECCDX: //here to store next Dx character
ch = CHARTBL[ m_ShiftReg[15] ];
m_DxBuf[m_DxBufIndex++] = ch;
if(m_DxBufIndex>2) //only need to save last 3 Dx characters
m_DxBufIndex = 0;
m_RxDecodeState = STATE_ECCRX;
break;
case STATE_ECCRX:
ch = CHARTBL[ m_ShiftReg[15] ];
if(ch!=255) //if ECC char is ok use it
m_RxBuf[m_RxBufIndex] = ch;
else //else use Dx ECC
m_RxBuf[m_RxBufIndex] = m_DxBuf[m_DxBufIndex];
if(m_Ecc == m_RxBuf[m_RxBufIndex])
{ //here if EEC correct MSG received in m_RxBuf[]
m_Str1.sprintf("*** Valid Msg ");
for(i=1; i<=m_RxBufIndex; i++)
{
m_Str1 += m_Str2.sprintf("% d",m_RxBuf[i]);
}
g_pTestBench->SendDebugTxt(m_Str1);
qDebug()<<"Got Valid Msg ecc = "<<m_Ecc << m_Str1;
emit g_pChatDialog->SendChatStr(m_Str1);
}
else
{
rxphzcnt = 0; //use to count up all error characters
for(i=1; i<=m_RxBufIndex; i++)
{
if(255==m_RxBuf[i])
rxphzcnt++;
}
m_Str1.sprintf("??? Got Bad Msg Cnt=%d",rxphzcnt);
qDebug()<<"Got BAD Msg ecc = "<<m_Ecc;
emit g_pChatDialog->SendChatStr(m_Str1);
g_pTestBench->SendDebugTxt(m_Str1);
}
m_RxDecodeState = STATE_PHASEDET;
//create/Reset Hi-Q resonator at the bit rate to recover bit sync position Q==200
m_BitSyncFilter.InitBP(100.0, 200.0, m_SampleRate);
break;
}
}
//inc current Bit position modulo 10
if( ++m_RxBitPos >= 10)
m_RxBitPos = 0;
}
|