1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
//////////////////////////////////////////////////////////////////////
// iir.cpp: implementation of the CIir class.
//
// This class implements a biquad IIR filter.
//
// Implements a second order IIR filter stage.
// The transfer function of the filter stage implemented is in
// the direct 2 form :
//
// -1 -2
// B0 + B1 z + B2 z
// H(z) = --------------------
// -1 -2
// 1 + A1 z + A2 z
//
// The block diagram used in the implementation is given below:
//
// input w(n) B0 output
// -----> + ----------+-----[>--> + ----->
// | | |
// | +--+--+ |
// | |Delay| |
// | +--+--+ |
// | -A1 |w(n-1) B1 |
// +----<]-----+-------[>--+
// | | |
// | +--+--+ |
// | |Delay| |
// | +--+--+ |
// | -A2 |w(n-2) B2 |
// +----<]-----+-------[>--+
// w(n) = in - A1*w(n-1) - A2*w(n-2)
// out = B0*w(n) + B1*w(n-1) + B2*w(n-2)
// w(n-2) = w(n-1) w(n-1) = w(n)
//*=========================================================================================
// The filter design equations came from a paper by Robert Bristow-Johnson
// "Cookbook formulae for audio EQ biquad filter coefficients"
//
// History:
// 2011-02-05 Initial creation MSW
// 2011-03-27 Initial release
// 2013-07-28 Added single/double precision math macros
//////////////////////////////////////////////////////////////////////
//==========================================================================================
// + + + This Software is released under the "Simplified BSD License" + + +
//Copyright 2010 Moe Wheatley. All rights reserved.
//
//Redistribution and use in source and binary forms, with or without modification, are
//permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY Moe Wheatley ``AS IS'' AND ANY EXPRESS OR IMPLIED
//WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
//FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Moe Wheatley OR
//CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
//SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
//ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//The views and conclusions contained in the software and documentation are those of the
//authors and should not be interpreted as representing official policies, either expressed
//or implied, of Moe Wheatley.
//==========================================================================================
#include "iir.h"
/////////////////////////////////////////////////////////////////////////////////
// Construct CIir object
/////////////////////////////////////////////////////////////////////////////////
CIir::CIir()
{
InitBR( 25000, 1000.0, 100000);
}
/////////////////////////////////////////////////////////////////////////////////
// Iniitalize IIR variables for Low Pass IIR filter.
// analog prototype == H(s) = 1 / (s^2 + s/Q + 1)
/////////////////////////////////////////////////////////////////////////////////
void CIir::InitLP( TYPEREAL F0Freq, TYPEREAL FilterQ, TYPEREAL SampleRate)
{
TYPEREAL w0 = K_2PI * F0Freq/SampleRate; //normalized corner frequency
TYPEREAL alpha = MSIN(w0)/(2.0*FilterQ);
TYPEREAL A = 1.0/(1.0 + alpha); //scale everything by 1/A0 for direct form 2
m_B0 = A*( (1.0 - MCOS(w0))/2.0);
m_B1 = A*( 1.0 - MCOS(w0));
m_B2 = A*( (1.0 - MCOS(w0))/2.0);
m_A1 = A*( -2.0*MCOS(w0));
m_A2 = A*( 1.0 - alpha);
m_w1a = 0.0;
m_w2a = 0.0;
m_w1b = 0.0;
m_w2b = 0.0;
}
/////////////////////////////////////////////////////////////////////////////////
// Iniitalize IIR variables for High Pass IIR filter.
// analog prototype == H(s) = s^2 / (s^2 + s/Q + 1)
/////////////////////////////////////////////////////////////////////////////////
void CIir::InitHP( TYPEREAL F0Freq, TYPEREAL FilterQ, TYPEREAL SampleRate)
{
TYPEREAL w0 = K_2PI * F0Freq/SampleRate; //normalized corner frequency
TYPEREAL alpha = MSIN(w0)/(2.0*FilterQ);
TYPEREAL A = 1.0/(1.0 + alpha); //scale everything by 1/A0 for direct form 2
m_B0 = A*( (1.0 + MCOS(w0))/2.0);
m_B1 = -A*( 1.0 + MCOS(w0));
m_B2 = A*( (1.0 + MCOS(w0))/2.0);
m_A1 = A*( -2.0*MCOS(w0));
m_A2 = A*( 1.0 - alpha);
m_w1a = 0.0;
m_w2a = 0.0;
m_w1b = 0.0;
m_w2b = 0.0;
}
/////////////////////////////////////////////////////////////////////////////////
// Iniitalize IIR variables for Band Pass IIR filter.
// analog prototype == H(s) = (s/Q) / (s^2 + s/Q + 1)
/////////////////////////////////////////////////////////////////////////////////
void CIir::InitBP( TYPEREAL F0Freq, TYPEREAL FilterQ, TYPEREAL SampleRate)
{
TYPEREAL w0 = K_2PI * F0Freq/SampleRate; //normalized corner frequency
TYPEREAL alpha = MSIN(w0)/(2.0*FilterQ);
TYPEREAL A = 1.0/(1.0 + alpha); //scale everything by 1/A0 for direct form 2
m_B0 = A * alpha;
m_B1 = 0.0;
m_B2 = A * -alpha;
m_A1 = A*( -2.0*MCOS(w0));
m_A2 = A*( 1.0 - alpha);
m_w1a = 0.0;
m_w2a = 0.0;
m_w1b = 0.0;
m_w2b = 0.0;
}
/////////////////////////////////////////////////////////////////////////////////
// Iniitalize IIR variables for Band Reject(Notch) IIR filter.
// analog prototype == H(s) = (s^2 + 1) / (s^2 + s/Q + 1)
/////////////////////////////////////////////////////////////////////////////////
void CIir::InitBR( TYPEREAL F0Freq, TYPEREAL FilterQ, TYPEREAL SampleRate)
{
TYPEREAL w0 = K_2PI * F0Freq/SampleRate; //normalized corner frequency
TYPEREAL alpha = MSIN(w0)/(2.0*FilterQ);
TYPEREAL A = 1.0/(1.0 + alpha); //scale everything by 1/A0 for direct form 2
m_B0 = A*1.0;
m_B1 = A*( -2.0*MCOS(w0));
m_B2 = A*1.0;
m_A1 = A*( -2.0*MCOS(w0));
m_A2 = A*( 1.0 - alpha);
m_w1a = 0.0;
m_w2a = 0.0;
m_w1b = 0.0;
m_w2b = 0.0;
}
/////////////////////////////////////////////////////////////////////////////////
// Process InLength InBuf[] samples and place in OutBuf[]
//REAL version
/////////////////////////////////////////////////////////////////////////////////
void CIir::ProcessFilter(int InLength, TYPEREAL* InBuf, TYPEREAL* OutBuf)
{
for(int i=0; i<InLength; i++)
{
TYPEREAL w0 = InBuf[i] - m_A1*m_w1a - m_A2*m_w2a;
OutBuf[i] =m_B0*w0 + m_B1*m_w1a + m_B2*m_w2a;
m_w2a = m_w1a;
m_w1a = w0;
}
}
/////////////////////////////////////////////////////////////////////////////////
// Process InLength InBuf[] samples and place in OutBuf[]
//Complex version
/////////////////////////////////////////////////////////////////////////////////
void CIir::ProcessFilter(int InLength, TYPECPX* InBuf, TYPECPX* OutBuf)
{
for(int i=0; i<InLength; i++)
{
TYPEREAL w0a = InBuf[i].re - m_A1*m_w1a - m_A2*m_w2a;
OutBuf[i].re =m_B0*w0a + m_B1*m_w1a + m_B2*m_w2a;
m_w2a = m_w1a;
m_w1a = w0a;
TYPEREAL w0b = InBuf[i].im - m_A1*m_w1b - m_A2*m_w2b;
OutBuf[i].im =m_B0*w0b + m_B1*m_w1b + m_B2*m_w2b;
m_w2b = m_w1b;
m_w1b = w0b;
}
}
|