1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
// pskdemod.cpp: implementation of the CPskDemod class.
//
// This class takes I/Q baseband data and performs
// PSK demodulation
// History:
// 2015-02-25 Initial creation MSW
//////////////////////////////////////////////////////////////////////
//==========================================================================================
// + + + This Software is released under the "Simplified BSD License" + + +
//Copyright 2010 Moe Wheatley. All rights reserved.
//
//Redistribution and use in source and binary forms, with or without modification, are
//permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY Moe Wheatley ``AS IS'' AND ANY EXPRESS OR IMPLIED
//WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
//FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Moe Wheatley OR
//CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
//SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
//ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//The views and conclusions contained in the software and documentation are those of the
//authors and should not be interpreted as representing official policies, either expressed
//or implied, of Moe Wheatley.
//==========================================================================================
#include "pskdemod.h"
#include "gui/testbench.h"
#include "gui/chatdialog.h"
#include "dsp/datatypes.h"
#include <QDebug>
#define SQ_THRESHOLD 0.7 //squelch threshold(probably should make it user adjustable)
#define OUT_AUDIO_SHIFT 700.0 //audio monitor tone shift frequency in Hz
#define K_NGN (4.7) //gain to make error in Hz
#define NLP_K (.01) //narrow AFC freq error LP filter constant
#define ELP_K (.05) //squelch energy LP filter constant
/////////////////////////////////////////////////////////////////////////////////
// Construct Psk demod object
/////////////////////////////////////////////////////////////////////////////////
CPskDemod::CPskDemod()
{
}
CPskDemod::~CPskDemod()
{
}
/////////////////////////////////////////////////////////////////////////////////
/// Set Module input sample rate(8000 to 20000), Symbol rate, and mode(ignored)
/////////////////////////////////////////////////////////////////////////////////
void CPskDemod::SetPskParams(TYPEREAL InSampleRate, TYPEREAL SymbRate, int Mode)
{
m_PskMode = Mode;
//calculate integer N to get close to 500Hz sample rate
m_DecRate = (int)(InSampleRate/500.0 + 0.5);
//calc actual sample rate after integer decimation
m_SampleRate = InSampleRate/(TYPEREAL)m_DecRate;
m_DecCnt = 0;
qDebug()<<"InSample rate = "<<InSampleRate<< "PSKSample rate = "<<m_SampleRate;
//create bit filter as LP filter with passband ~Symbol rate(not perfect but is close)
int taps = m_BitFir.InitLPFilter(0, 1.0, 60.0, SymbRate/2.0, SymbRate, m_SampleRate);//initialize BIT FIR filter
qDebug()<<"PSK Bit rate, taps = "<<SymbRate << taps;
//create AFC filter as LP filter with passband ~2*Symbol Rate
taps = m_FreqFir.InitLPFilter(0, 1.0, 30.0, SymbRate, SymbRate*2.0, m_SampleRate);//initialize LP AFC FIR filter
qDebug()<<"Freq FIR taps = "<< taps;
m_PrevSymbol.re = 0.0;
m_PrevSymbol.im = 0.0;
//create Hi-Q resonator at the symbol rate to recover bit sync position
m_BitSyncFilter.InitBP(SymbRate, 150, m_SampleRate);
//create fixed digital sin/cos oscillator to shift baseband psk to soundcard audio out for monitoring
m_NcoInc = K_2PI*OUT_AUDIO_SHIFT/(InSampleRate);
m_OscCos = MCOS(m_NcoInc);
m_OscSin = MSIN(m_NcoInc);
m_Osc1.re = 1.0; //initialize unit vector that will get rotated
m_Osc1.im = 0.0;
//init a bunch of internal variables
m_NcoPhase = 0.0;
m_WFerrAve = 0.0;
m_NFerrAve = 0.0;
m_FreqError = 0.0;
m_IntegralFerr = 0.0;
m_z1.re = 0.0; m_z1.im = 0.0;
m_z2.re = 0.0; m_z2.im = 0.0;
m_AveMag = 0.0;
m_AveEnergy =0.0;
m_LastBitMag = 0.0;
m_LastSyncSlope = 0.0;
}
/////////////////////////////////////////////////////////////////////////////////
// Process PSK demod (STEREO audio out version)
/////////////////////////////////////////////////////////////////////////////////
int CPskDemod::ProcessData(int InLength, TYPECPX* pInData, TYPECPX* pOutData)
{
TYPEREAL RealAudioBuf[2048];
//just call real version and write real audio to both channels
ProcessData( InLength, pInData, RealAudioBuf);
for(int i=0; i<InLength; i++)
{
pOutData[i].re = RealAudioBuf[i];
pOutData[i].im = RealAudioBuf[i];
}
return InLength; //length of monitor audio output samples
}
/////////////////////////////////////////////////////////////////////////////////
// Process PSK demod (MONO audio out version)
/////////////////////////////////////////////////////////////////////////////////
int CPskDemod::ProcessData(int InLength, TYPECPX* pInData, TYPEREAL* pOutData)
{
int length = 0;
for(int i=0; i<InLength; i++)
{
//shift to baseband by AFC error frequency
TYPECPX tmp = pInData[i];
TYPEREAL Sin = MSIN(m_NcoPhase);
TYPEREAL Cos = MCOS(m_NcoPhase);
pInData[i].re = ((tmp.re * Cos) - (tmp.im * Sin));
pInData[i].im = ((tmp.re * Sin) + (tmp.im * Cos));
tmp = pInData[i];
//update NCO phase with freqeuncy error offset
m_NcoPhase += m_FreqError;
m_NcoPhase = MFMOD(m_NcoPhase, K_2PI); //keep radian counter bounded
//now create shifted frequency data for audio out
//use digital oscillator since is fixed freq
TYPEREAL OscGn;
TYPECPX Osc;
Osc.re = m_Osc1.re * m_OscCos - m_Osc1.im * m_OscSin;
Osc.im = m_Osc1.im * m_OscCos + m_Osc1.re * m_OscSin;
OscGn = 1.95 - (m_Osc1.re*m_Osc1.re + m_Osc1.im*m_Osc1.im);
m_Osc1.re = OscGn * Osc.re;
m_Osc1.im = OscGn * Osc.im;
//Cpx multiply by audio output shift frequency take only real
pOutData[i] = ((tmp.re * Osc.re) - (tmp.im * Osc.im));
//perform decimate by m_DecRate and normalize input data to about +/- 1.0
// !! input has to be BW limited by main filter ~ <200Hz so just take every m_DecRate samples !!
// in cutesdr input values are AGC'd but not normalized to 1.0 so do it here after decimation
if( ++m_DecCnt >= m_DecRate )
{
m_DecCnt = 0;
TYPEREAL p = sqrt( (tmp.re*tmp.re)+(tmp.im*tmp.im));
m_AveMag = (1.0-0.01)*m_AveMag + (0.01)*p;
if(m_AveMag>0.0)
{
pInData[length].re = pInData[i].re / m_AveMag;
pInData[length].im = pInData[i].im / m_AveMag;
}
length++;
}
}
//perform AFC on decimated I/Q data
CalcAfc(length, pInData);
//perform narrow bit filtering
m_BitFir.ProcessFilter(length, pInData, pInData);
g_pTestBench->DisplayData(length, 10000.0, pInData, m_SampleRate, PROFILE_3);
//Generate bit magnitude array for getting bit sinc position
for(int i=0; i<length; i++)
m_BitMag[i] = fabs( pInData[i].re ) + fabs( pInData[i].im );
//run Hi-Q resonator filter on mag data that creates a sin wave that will lock to BitRate clock
m_BitSyncFilter.ProcessFilter(length, m_BitMag, m_BitMag);
//search through sync filter output looking for positive peak of sine wave position
for(int i=0; i<length; i++)
{
//the best bit sync position is at the positive peak of the m_BitMag waveform
TYPEREAL CurrentSlope = m_BitMag[i] - m_LastBitMag; //current slope
//see if at the top peak of the sync waveform(slope changes from pos to neg)
if( (CurrentSlope < 0.0) && (m_LastSyncSlope >= 0.0) )
{ //are at sample time so use previous sample value as we are one sample behind in sync position
ManageSquelch( DecodeSymb(m_PrevSample) );
}
m_LastBitMag = m_BitMag[i]; //save previous states
m_LastSyncSlope = CurrentSlope;
m_PrevSample = pInData[i];
}
return InLength; //length of monitor audio output samples
}
//////////////////////////////////////////////////////////////////////
// Manage AFC logic
//////////////////////////////////////////////////////////////////////
void CPskDemod::CalcAfc(int InLength, TYPECPX* pInData)
{
#define K_WGN (38.5) //gain to make error in Hz
#define WLP_K (.002)
#define K_GNP 1.0
#define K_GNI 0.1
TYPEREAL ferror;
//filter input about twice the BW of the psk signal for AFC calculation
m_FreqFir.ProcessFilter(InLength, pInData, m_FreqErrBuf);
for(int i=0; i<InLength; i++)
{
//FM demodulate using differentiator and LP filter to get overall frequency error
ferror = K_WGN*((m_FreqErrBuf[i].im - m_z2.im) * m_z1.re - (m_FreqErrBuf[i].re - m_z2.re) * m_z1.im);
m_z2 = m_z1;
m_z1 = m_FreqErrBuf[i];
// error is ~Hz error
if( ferror > 16.0 ) //clamp range
ferror = 16.0;
if( ferror < -16.0 )
ferror = -16.0;
m_WFerrAve = (1.0-WLP_K)*m_WFerrAve + (WLP_K)*ferror;
}
if( fabs(m_WFerrAve) > 2.0 )
{ //use wide freq error for large errors
m_IntegralFerr += (K_GNI*m_WFerrAve);
m_FreqError = K_GNP*m_WFerrAve + m_IntegralFerr;
}
else
{ //use cross product freq error for small errors
m_IntegralFerr += (K_GNI*m_NFerrAve);
m_FreqError = K_GNP*m_NFerrAve + m_IntegralFerr;
}
//clamp integrator and frequency error terms
if(m_IntegralFerr > 20.0)
m_IntegralFerr = 20.0;
else if(m_IntegralFerr < -20.0)
m_IntegralFerr = -20.0;
if(m_FreqError > 20.0)
m_FreqError = 20.0;
else if(m_FreqError < -20.0)
m_FreqError = -20.0;
//scale correction error to NCO phase increment units
m_FreqError = -(K_2PI*m_FreqError)/(m_SampleRate*m_DecRate);
}
//////////////////////////////////////////////////////////////////////
// Manage Squelch
//////////////////////////////////////////////////////////////////////
void CPskDemod::ManageSquelch(quint8 ch)
{
if(0x0000 == m_BitAcc) //if idle state then force sq on
m_AveEnergy = 5.0;
else if(0xFFFF == m_BitAcc) //if ones force off
m_AveEnergy = 0.0;
//qDebug()<<m_AveEnergy;
if(m_AveEnergy<SQ_THRESHOLD)
ch = 0;
if(ch != 0)
emit g_pChatDialog->SendChatData(ch);
}
//////////////////////////////////////////////////////////////////////
// Decode the new symbol
//////////////////////////////////////////////////////////////////////
quint8 CPskDemod::DecodeSymb(TYPECPX newsymb)
{
quint8 ch = 0;
quint8 bit;
//calc dot product of BPSK symbol with previous symbol
TYPEREAL DotProd = m_PrevSymbol.re * newsymb.re + m_PrevSymbol.im * newsymb.im;
//bpsk data bit is just sign of dot product
if(DotProd < 0.0)
{
bit = 0; //phase change
DotProd = -DotProd; //create abs of dot product as signal energy measure
}
else
bit = 1; //no phase change
//filter dot product as rough signal energy indicator for squelch function
m_AveEnergy = (1.0-ELP_K)*m_AveEnergy + (ELP_K)*DotProd;
//calc cross product of BPSK symbol with previous symbol
//cross product is proportional to frequency error after correcting with decoded bit
TYPEREAL ferror = K_NGN*(m_PrevSymbol.re * newsymb.im - m_PrevSymbol.im * newsymb.re);
//use decoded bit to remove sign ambiguity in error
if(!bit)
ferror = -ferror;
// error is ~Hz error
if( ferror > 3.0 ) //clamp error range
ferror = 3.0;
if( ferror < -3.0 )
ferror = -3.0;
//LP filter error
m_NFerrAve = (1.0-NLP_K)*m_NFerrAve + (NLP_K)*ferror;
//put new bit in veroicode shift register
m_VericodeAcc <<= 1;
m_VericodeAcc |= bit;
if( 0 == (m_VericodeAcc & 0x0003) ) //if last 2 bits are zeros, character delimiter
{
if(m_VericodeAcc != 0 )
{
ch = VARICODE_DEC_TABLE[(m_VericodeAcc>>3) & 0x07FF];
m_VericodeAcc = 0;
}
}
m_BitAcc <<= 1; //create bit shifter that doesnt get cleared for fast squelch use
m_BitAcc |= bit;
m_PrevSymbol = newsymb;
return ch;
}
|