1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
|
// samdemod.cpp: implementation of the CSamDemod class.
//
// This class takes I/Q baseband data and performs
// Synchronous AM demodulation
//
// History:
// 2010-09-22 Initial creation MSW
// 2011-03-27 Initial release
// 2011-08-07 Modified FIR filter initialization to force fixed size
// 2013-07-28 Added single/double precision math macros
//////////////////////////////////////////////////////////////////////
//==========================================================================================
// + + + This Software is released under the "Simplified BSD License" + + +
//Copyright 2010 Moe Wheatley. All rights reserved.
//
//Redistribution and use in source and binary forms, with or without modification, are
//permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY Moe Wheatley ``AS IS'' AND ANY EXPRESS OR IMPLIED
//WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
//FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Moe Wheatley OR
//CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
//SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
//ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//The views and conclusions contained in the software and documentation are those of the
//authors and should not be interpreted as representing official policies, either expressed
//or implied, of Moe Wheatley.
//==========================================================================================
#include "samdemod.h"
#include "gui/testbench.h"
#include "dsp/datatypes.h"
#include "dsp/filtercoef.h"
#include <QDebug>
#define DC_ALPHA 0.99 //ALPHA for DC removal filter ~20Hz Fcut with 15625Hz Sample Rate
#define PLL_BW 100.0 //natural frequency ~ loop bandwidth
#define PLL_ZETA .707 //PLL Loop damping factor
#define PLL_LIMIT 1000.0 //+- frequency limit in Hz
/////////////////////////////////////////////////////////////////////////////////
// Construct SAM demod object
/////////////////////////////////////////////////////////////////////////////////
CSamDemod::CSamDemod(TYPEREAL samplerate) : m_SampleRate(samplerate)
{
m_y1 = 0.0;
m_z1 = 0.0;
m_NcoPhase = 0.0;
m_NcoFreq = 0.0;
TYPEREAL norm = K_2PI/m_SampleRate;
m_NcoLLimit = -PLL_LIMIT * norm; //clamp SAM NCO to +-1KHz
m_NcoHLimit = PLL_LIMIT * norm;
m_PllAlpha = 2.0*PLL_ZETA*PLL_BW * norm;
m_PllBeta = (m_PllAlpha * m_PllAlpha)/(4.0*PLL_ZETA*PLL_ZETA);
//create complex lowpass filter pair with LP cuttoff of 5000Hz and transition width of 1000Hz
// 40dB stop band attenuation
m_Fir.InitLPFilter(0, 1.0, 40.0, 4500, 5500,m_SampleRate);
//apply transform to shift the LP filter 5000Hz so now the filter is
// a 0 to 10000Hz Hilbert bandpass filter with 90 degree phase shift
m_Fir.GenerateHBFilter(5000.0);
}
/////////////////////////////////////////////////////////////////////////////////
// Process SAM demod MONO version
/////////////////////////////////////////////////////////////////////////////////
int CSamDemod::ProcessData(int InLength, TYPECPX* pInData, TYPEREAL* pOutData)
{
TYPECPX tmp;
for(int i=0; i<InLength; i++)
{
TYPEREAL Sin = MSIN(m_NcoPhase);
TYPEREAL Cos = MCOS(m_NcoPhase);
//complex multiply input sample by NCO's -sin and cos
tmp.re = Cos * pInData[i].re - Sin * pInData[i].im;
tmp.im = Cos * pInData[i].im + Sin * pInData[i].re;
//find current sample phase after being shifted by NCO frequency
TYPEREAL phzerror = -MATAN2(tmp.im, tmp.re);
//TYPEREAL test = phzerror*100.0;
//g_pTestBench->DisplayData(1, 1.0, &test, m_SampleRate,PROFILE_6);
m_NcoFreq += (m_PllBeta * phzerror); // radians per sampletime
//clamp NCO frequency so doesn't drift out of lock range
if(m_NcoFreq > m_NcoHLimit)
m_NcoFreq = m_NcoHLimit;
else if(m_NcoFreq < m_NcoLLimit)
m_NcoFreq = m_NcoLLimit;
//update NCO phase with new value
m_NcoPhase += (m_NcoFreq + m_PllAlpha * phzerror);
//High pass filter(DC removal) with IIR filter
// H(z) = (1 - z^-1)/(1 - ALPHA*z^-1)
TYPEREAL z0 = tmp.re + (m_z1 * DC_ALPHA); //just use real output for mono
pOutData[i] = (z0 - m_z1);
m_z1 = z0;
}
m_NcoPhase = MFMOD(m_NcoPhase, K_2PI); //keep radian counter bounded
return InLength;
}
/////////////////////////////////////////////////////////////////////////////////
// Process SAM demod STEREO version
/////////////////////////////////////////////////////////////////////////////////
int CSamDemod::ProcessData(int InLength, TYPECPX* pInData, TYPECPX* pOutData)
{
TYPECPX tmp;
for(int i=0; i<InLength; i++)
{
TYPEREAL Sin = MSIN(m_NcoPhase);
TYPEREAL Cos = MCOS(m_NcoPhase);
//complex multiply input sample by NCO's sin and cos
tmp.re = Cos * pInData[i].re - Sin * pInData[i].im;
tmp.im = Cos * pInData[i].im + Sin * pInData[i].re;
//find current sample phase error after being shifted by NCO frequency
TYPEREAL phzerror = -MATAN2(tmp.im, tmp.re);
//TYPEREAL test = phzerror*100.0;
//g_pTestBench->DisplayData(1, 1.0, &test, m_SampleRate,PROFILE_6);
m_NcoFreq += (m_PllBeta * phzerror); // radians per sampletime
//clamp NCO frequency so doesn't drift out of lock range
if(m_NcoFreq > m_NcoHLimit)
m_NcoFreq = m_NcoHLimit;
else if(m_NcoFreq < m_NcoLLimit)
m_NcoFreq = m_NcoLLimit;
//update NCO phase with new value
m_NcoPhase += (m_NcoFreq + m_PllAlpha * phzerror);
//High pass filter(DC removal) with IIR filter
// H(z) = (1 - z^-1)/(1 - ALPHA*z^-1)
TYPEREAL z0 = tmp.re + (m_z1 * DC_ALPHA);
TYPEREAL y0 = tmp.im + (m_y1 * DC_ALPHA);
pOutData[i].re = (z0 - m_z1);
pOutData[i].im = (y0 - m_y1);
m_y1 = y0;
m_z1 = z0;
}
m_NcoPhase = MFMOD(m_NcoPhase, K_2PI); //keep radian counter bounded
//process I/Q with bandpass filter with 90deg phase shift between the I and Q filters
m_Fir.ProcessFilter(InLength, pOutData, pOutData);
for(int i=0; i<InLength; i++)
{
tmp = pOutData[i];
pOutData[i].im = tmp.re - tmp.im; //send upper sideband to (right)channel
pOutData[i].re = tmp.re + tmp.im; //send lower sideband to (left)channel
}
return InLength;
}
|