1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
|
// wfmdemod.cpp: implementation of the CWFmDemod class.
//
// This class takes I/Q baseband data and performs
// Wideband FM demodulation
//
// History:
// 2011-09-17 Initial creation MSW
// 2011-09-17 Initial release
// 2013-07-28 Added single/double precision math macros
// 2014-09-22 Added some test code to output to a wav file
// 2016-01-10 removed x86 assembly code
//////////////////////////////////////////////////////////////////////
//==========================================================================================
// + + + This Software is released under the "Simplified BSD License" + + +
//Copyright 2011 Moe Wheatley. All rights reserved.
//
//Redistribution and use in source and binary forms, with or without modification, are
//permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY Moe Wheatley ``AS IS'' AND ANY EXPRESS OR IMPLIED
//WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
//FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Moe Wheatley OR
//CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
//SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
//ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//The views and conclusions contained in the software and documentation are those of the
//authors and should not be interpreted as representing official policies, either expressed
//or implied, of Moe Wheatley.
//==========================================================================================
#include "wfmdemod.h"
#include "gui/testbench.h"
#include "dsp/datatypes.h"
#include "interface/perform.h"
#include <QDebug>
#define FMDEMOD_GAIN 8000.0
#define PILOTPLL_RANGE 20.0 //maximum deviation limit of PLL
#define PILOTPLL_BW 10.0 //natural frequency ~loop bandwidth
#define PILOTPLL_ZETA .707 //PLL Loop damping factor
#define PILOTPLL_FREQ 19000.0 //Centerfreq
#define LOCK_TIMECONST .5 //Lock filter time in seconds
#define LOCK_MAG_THRESHOLD 0.05 //Lock error magnitude threshold
#define PHASE_ADJ_M -7.267e-6 //fudge factor slope to compensate for PLL delay
#define PHASE_ADJ_B 3.677 //fudge factor intercept to compensate for PLL delay
//bunch of RDS constants
#define USE_FEC 1 //set to zero to disable FEC correction
#define RDS_FREQUENCY 57000.0
#define RDS_BITRATE (RDS_FREQUENCY/48.0) //1187.5 bps bitrate
#define RDSPLL_RANGE 12.0 //maximum deviation limit of PLL
#define RDSPLL_BW 1.0 //natural frequency ~loop bandwidth
#define RDSPLL_ZETA .707 //PLL Loop damping factor
//RDS decoder states
#define STATE_BITSYNC 0 //looking for initial bit position in Block 1
#define STATE_BLOCKSYNC 1 //looking for initial correct block order
#define STATE_GROUPDECODE 2 //decode groups after achieving bit and block sync
#define STATE_GROUPRESYNC 3 //waiting for beginning of new group after getting a block error
#define BLOCK_ERROR_LIMIT 5 //number of bad blocks before trying to resync at the bit level
#define HILB_LENGTH 61
const TYPEREAL HILBLP_H[HILB_LENGTH] =
{ //LowPass filter prototype that is shifted and "hilbertized" to get 90 deg phase shift
//and convert to baseband complex domain.
//kaiser-Bessel alpha 1.4 cutoff 30Khz at sample rate of 250KHz
-0.000389631665953405,0.000115430826670992,0.000945331102222503,0.001582460677684605,
0.001370803713784687,-0.000000000000000002,-0.002077413537668161,-0.003656132107176520,
-0.003372610825000167,-0.000649815020884706, 0.003583263233560064, 0.006997162933343487,
0.006990985399916562, 0.002383133886438500,-0.005324501734543406,-0.012092135317628615,
-0.013212201698221963,-0.006168904735839018, 0.007082277142635906, 0.020017841466263672,
0.024271835962039127, 0.014255112728911837,-0.008597071392140753,-0.034478282954624850,
-0.048147195828726633,-0.035409729589347565, 0.009623663461671806, 0.080084441681677138,
0.157278883310078170, 0.217148915611638180, 0.239688166538436750, 0.217148915611638180,
0.157278883310078170, 0.080084441681677138, 0.009623663461671806,-0.035409729589347565,
-0.048147195828726633,-0.034478282954624850,-0.008597071392140753, 0.014255112728911837,
0.024271835962039127, 0.020017841466263672, 0.007082277142635906,-0.006168904735839018,
-0.013212201698221963,-0.012092135317628615,-0.005324501734543406, 0.002383133886438500,
0.006990985399916562, 0.006997162933343487, 0.003583263233560064,-0.000649815020884706,
-0.003372610825000167,-0.003656132107176520,-0.002077413537668161,-0.000000000000000002,
0.001370803713784687, 0.001582460677684605, 0.000945331102222503, 0.000115430826670992,
-0.000389631665953405
};
#if 0
const TYPEREAL HILBLP_H[HILB_LENGTH] = { //test wideband hilbert
0.000639403635f,
-0.000876414761f,
0.000763344477f,
-0.000136153196f,
-0.000959189633f,
0.002196797759f,
-0.003022642082f,
0.002843677701f,
-0.001305921508f,
-0.001445249432f,
0.004652418499f,
-0.007079194912f,
0.007402035698f,
-0.004761371611f,
-0.000723462240f,
0.007705168551f,
-0.013799667280f,
0.016252251992f,
-0.012930808533f,
0.003338459172f,
0.010731465462f,
-0.025212726547f,
0.034579859350f,
-0.033317627946f,
0.017655163815f,
0.012969531446f,
-0.055222198103f,
0.102266070453f,
-0.145217247362f,
0.175301692976f,
0.813425068326f,
0.175301692976f,
-0.145217247362f,
0.102266070453f,
-0.055222198103f,
0.012969531446f,
0.017655163815f,
-0.033317627946f,
0.034579859350f,
-0.025212726547f,
0.010731465462f,
0.003338459172f,
-0.012930808533f,
0.016252251992f,
-0.013799667280f,
0.007705168551f,
-0.000723462240f,
-0.004761371611f,
0.007402035698f,
-0.007079194912f,
0.004652418499f,
-0.001445249432f,
-0.001305921508f,
0.002843677701f,
-0.003022642082f,
0.002196797759f,
-0.000959189633f,
-0.000136153196f,
0.000763344477f,
-0.000876414761f,
0.000639403635f
};
#endif
/////////////////////////////////////////////////////////////////////////////////
// Construct/destruct WFM demod object
/////////////////////////////////////////////////////////////////////////////////
CWFmDemod::CWFmDemod(TYPEREAL samplerate) : m_SampleRate(samplerate)
{
m_pDecBy2A = NULL;
m_pDecBy2B = NULL;
m_pDecBy2C = NULL;
m_PilotPhaseAdjust = 0.0;
SetSampleRate(samplerate, true);
m_InBitStream = 0;
m_CurrentBitPosition = 0;
m_CurrentBlock = BLOCK_A;
m_DecodeState = STATE_BITSYNC;
m_BGroupOffset = 0;
m_PilotLocked = false;
m_LastPilotLocked = !m_PilotLocked;
m_BlockErrors = 0;
QAudioFormat format;
format.setChannelCount(2);
format.setSampleSize(16);
format.setSampleRate(245760);
format.setCodec("audio/pcm");
format.setSampleType(QAudioFormat::SignedInt);
}
CWFmDemod::~CWFmDemod()
{ //destroy resources
if(m_pDecBy2A)
delete m_pDecBy2A;
if(m_pDecBy2B)
delete m_pDecBy2B;
if(m_pDecBy2C)
delete m_pDecBy2C;
}
/////////////////////////////////////////////////////////////////////////////////
// Sets demodulator parameters based on input sample rate
// returns the audio sample rate that is produced
// Input sample rate should be in the range 200 to 400Ksps
// The output rate will be between 50KHz and 100KHz
/////////////////////////////////////////////////////////////////////////////////
TYPEREAL CWFmDemod::SetSampleRate(TYPEREAL samplerate, bool USver)
{
//delete any resources that may still exist
if(m_pDecBy2A)
delete m_pDecBy2A;
if(m_pDecBy2B)
delete m_pDecBy2B;
if(m_pDecBy2C)
delete m_pDecBy2C;
m_pDecBy2A = NULL;
m_pDecBy2B = NULL;
m_pDecBy2C = NULL;
m_OutRate = m_SampleRate = samplerate;
//Determine post demod decimation rate based on input sample rate range
// try to get down to close to 50khz
if(m_SampleRate>400000)//need dec by 8
{
m_pDecBy2C = new CDecimateBy2(HB47TAP_LENGTH, HB47TAP_H);
m_OutRate /= 2.0;
}
if(m_SampleRate>200000)//need dec by 4
{
m_pDecBy2B = new CDecimateBy2(HB47TAP_LENGTH, HB47TAP_H);
m_OutRate /= 2.0;
}
if(m_SampleRate>100000)//need dec by 2
{
m_pDecBy2A = new CDecimateBy2(HB47TAP_LENGTH, HB47TAP_H);
m_OutRate /= 2.0;
}
qDebug()<<"WFW Rates = "<<m_SampleRate <<m_OutRate;
//set Stereo Pilot phase adjustment values based on sample rate
// compensation function is a straight line approximation with
// form y = Mx + B
m_PilotPhaseAdjust = PHASE_ADJ_M*m_SampleRate + PHASE_ADJ_B;
qDebug()<<"PhaseAdj = "<< m_PilotPhaseAdjust;
m_MonoLPFilter.InitLP(75000, 1.0, m_SampleRate);
//create filters to create baseband complex data from real fmdemoulator output
m_HilbertFilter.InitConstFir(HILB_LENGTH, HILBLP_H, m_SampleRate);
m_HilbertFilter.GenerateHBFilter(42000); //shift +/-30KHz LP filter by 42KHz to make 12 to 72KHz bandpass
//Create narrow BP filter around 19KHz pilot tone with Q=500
m_PilotBPFilter.InitBP(PILOTPLL_FREQ, 500, m_SampleRate);
InitPilotPll(m_SampleRate);
//create LP filter to roll off audio
m_LPFilter.InitLPFilter(0, 1.0,60.0, 15000.0,1.4*15000.0, m_OutRate);
//create 19KHz pilot notch filter with Q=5
m_NotchFilter.InitBR(PILOTPLL_FREQ, 5, m_OutRate);
//create deemphasis filter with 75uSec or 50uSec LP corner
if(USver)
InitDeemphasis(75E-6, m_OutRate);
else
InitDeemphasis(50E-6, m_OutRate);
m_RdsOutputRate = m_RdsDownConvert.SetDataRate(m_SampleRate, 8000.0);
m_RdsDownConvert.SetFrequency(-RDS_FREQUENCY); //set up to shift 57KHz RDS down to baseband and decimate
qDebug()<<"RDS Rate = "<< m_RdsOutputRate;
InitRds(m_RdsOutputRate);
m_PilotLocked = false;
m_LastPilotLocked = !m_PilotLocked;
return m_OutRate;
}
/////////////////////////////////////////////////////////////////////////////////
// Process WFM demod MONO version
// Simple demod without stereo or RDS decoding
//
// InLength == number of complex input samples in complex array pInData
// pInData == pointer to callers complex input array (users input data is overwriten!!)
// pOutData == pointer to callers real(mono audio) output array
// returns number of samples placed in callers output array
/////////////////////////////////////////////////////////////////////////////////
int CWFmDemod::ProcessData(int InLength, TYPECPX* pInData, TYPEREAL* pOutData)
{
m_MonoLPFilter.ProcessFilter(InLength,pInData, pInData);
g_pTestBench->DisplayData(InLength, 1.0, pInData, m_SampleRate,PROFILE_2);
for(int i=0; i<InLength; i++)
{
m_D0 = pInData[i];
pOutData[i] = FMDEMOD_GAIN*MATAN2( (m_D1.re*m_D0.im - m_D0.re*m_D1.im), (m_D1.re*m_D0.re + m_D1.im*m_D0.im));
m_D1 = m_D0;
}
//decimate down close to final audio rate by dividing by 2's
if(m_pDecBy2A)
InLength = m_pDecBy2A->DecBy2(InLength, pOutData, pOutData);
if(m_pDecBy2B)
InLength = m_pDecBy2B->DecBy2(InLength, pOutData, pOutData);
if(m_pDecBy2C)
InLength = m_pDecBy2C->DecBy2(InLength, pOutData, pOutData);
//g_pTestBench->DisplayData(InLength, 1.0, m_RawFm, m_SampleRate,PROFILE_2);
m_LPFilter.ProcessFilter( InLength, pOutData, pOutData); //rolloff audio above 15KHz
ProcessDeemphasisFilter(InLength, pOutData, pOutData); //50 or 75uSec de-emphasis one pole filter
m_NotchFilter.ProcessFilter( InLength, pOutData, pOutData); //notch out 19KHz pilot
m_PilotLocked = false;
return InLength;
}
/////////////////////////////////////////////////////////////////////////////////
// Process WFM demod STEREO version
// Process complex I/Q baseband data input by:
// Perform wideband FM demod into a REAL data stream.
// Perform REAL to complex filtering to make easier to shift and process signals
// within the demodulated FM signal.
// IIR Filter around the 19KHz Pilot then Phase Lock a PLL to it.
// If locked, perform stereo demuxing using the PLL signal and a delay line to
// match the raw REAL data stream.
// Shift the 57KHz RDS signal to baseband and decimate its sample rate down.
// PLL the DSB RDS signal and recover the RDS DSB signal.
// Run the RDS signal through a matched filter to recover the biphase data.
// Use a IIR resonator to recover the bit clock and sample the RDS data.
// Call the RDS decoder routine with each new bit to recover the RDS data groups.
//
// InLength == number of complex input samples in complex array pInData
// pInData == pointer to callers complex input array
// pOutData == pointer to callers complex(stereo audio) output array
// returns number of samples placed in callers output array
/////////////////////////////////////////////////////////////////////////////////
int CWFmDemod::ProcessData(int InLength, TYPECPX* pInData, TYPECPX* pOutData)
{
TYPEREAL LminusR;
//StartPerformance();
for(int i=0; i<InLength; i++)
{
m_D0 = pInData[i];
// m_RawFm[i] = FMDEMOD_GAIN*MATAN2( (m_D1.re*m_D0.im - m_D0.re*m_D1.im), (m_D1.re*m_D0.re + m_D1.im*m_D0.im));//~266 nSec/sample
m_RawFm[i] = FMDEMOD_GAIN*arctan2( (m_D1.re*m_D0.im - m_D0.re*m_D1.im), (m_D1.re*m_D0.re + m_D1.im*m_D0.im));//~266 nSec/sample
m_D1 = m_D0;
}
//StopPerformance(InLength);
g_pTestBench->DisplayData(InLength, 1.0, m_RawFm, m_SampleRate,PROFILE_2);
//create complex data from demodulator real data
m_HilbertFilter.ProcessFilter(InLength, m_RawFm, m_CpxRawFm); //~173 nSec/sample
//g_pTestBench->DisplayData(InLength, 1.0, m_CpxRawFm, m_SampleRate,PROFILE_3);
m_PilotBPFilter.ProcessFilter(InLength, m_CpxRawFm, pInData);//~173 nSec/sample, use input buffer for complex output storage
if(ProcessPilotPll(InLength, pInData) )
{ //if pilot tone present, do stereo demuxing
for(int i=0; i<InLength; i++)
{
TYPEREAL in = m_RawFm[i];
//Left minus Right signal is created by multiplying by 38KHz recovered pilot
// scale by 2 since DSB amplitude is half of the Right plus Left signal
LminusR = 2.0 * in * MSIN( m_PilotPhase[i]*2.0);
pOutData[i].re = in + LminusR; //extract left and right signals
pOutData[i].im = in - LminusR;
}
m_PilotLocked = true;
}
else
{ //no pilot so is mono. Just copy real fm demod into both right and left channels
for(int i=0; i<InLength; i++)
{
pOutData[i].re = m_RawFm[i];
pOutData[i].im = m_RawFm[i];
}
m_PilotLocked = false;
}
//translate 57KHz RDS signal to baseband and decimate RDS complex signal
int length = m_RdsDownConvert.ProcessData(InLength, m_CpxRawFm, m_RdsRaw);
//filter baseband RDS signal
//g_pTestBench->DisplayData(length, 1.0, m_RdsRaw, m_RdsOutputRate, PROFILE_3);
m_RdsBPFilter.ProcessFilter(length, m_RdsRaw, m_RdsRaw);
//g_pTestBench->DisplayData(length, m_RdsRaw, m_RdsOutputRate, PROFILE_3);
//PLL to remove any rotation since may not be phase locked to 19KHz Pilot or may not even have pilot
ProcessRdsPll(length, m_RdsRaw, m_RdsMag);
//g_pTestBench->DisplayData(length, 1.0, m_RdsMag, m_RdsOutputRate, PROFILE_3);
//run matched filter correlator to extract the bi-phase data bits
m_RdsMatchedFilter.ProcessFilter(length,m_RdsMag,m_RdsData);
//g_pTestBench->DisplayData(length, 1.0, m_RdsData, m_RdsOutputRate, PROFILE_6);
//create bit sync signal in m_RdsMag[] by squaring data
for(int i=0; i<length; i++)
m_RdsMag[i] = m_RdsData[i]* m_RdsData[i]; //has high energy at the bit clock rate and 2x bit rate
//g_pTestBench->DisplayData(length, 1.0, m_RdsMag, m_RdsOutputRate, PROFILE_6);
//run Hi-Q resonator filter that create a sin wave that will lock to BitRate clock and not 2X rate
m_RdsBitSyncFilter.ProcessFilter(length, m_RdsMag, m_RdsMag);
//g_pTestBench->DisplayData(length, 1.0, m_RdsMag, m_RdsOutputRate, PROFILE_6);
//now loop through samples to determine where bit position is and extract binary digital data
for(int i=0; i<length; i++)
{
TYPEREAL Data = m_RdsData[i];
TYPEREAL SyncVal = m_RdsMag[i];
//the best bit sync position is at the positive peak of the sync sine wave
TYPEREAL Slope = SyncVal - m_RdsLastSync; //current slope
m_RdsLastSync = SyncVal;
//see if at the top of the sine wave
if( (Slope<0.0) && (m_RdsLastSyncSlope*Slope)<0.0 )
{ //are at sample time so read previous bit time since we are one sample behind in sync position
int bit;
if(m_RdsLastData>=0)
{
bit = 1;
m_RdsRaw[i].re = m_RdsLastData;
}
else
{
bit = 0;
m_RdsRaw[i].re = m_RdsLastData;
}
//need to XOR with previous bit to get actual data bit value
ProcessNewRdsBit(bit^m_RdsLastBit); //go process new RDS Bit
m_RdsLastBit = bit;
}
else
{
m_RdsRaw[i].re = 0;
}
m_RdsLastData = Data; //keep last bit since is differential data
m_RdsLastSyncSlope = Slope;
m_RdsRaw[i].im = Data;
}
//g_pTestBench->DisplayData(length, 1.0, m_RdsRaw, m_RdsOutputRate, PROFILE_3); //display rds data and sample point
//g_pTestBench->DisplayData(length, 1.0, m_RdsData, m_RdsOutputRate, PROFILE_3);
//decimate by 2's down close to final audio rate
if(m_pDecBy2A)
InLength = m_pDecBy2A->DecBy2(InLength, pOutData, pOutData);
if(m_pDecBy2B)
InLength = m_pDecBy2B->DecBy2(InLength, pOutData, pOutData);
if(m_pDecBy2C)
InLength = m_pDecBy2C->DecBy2(InLength, pOutData, pOutData);
m_LPFilter.ProcessFilter( InLength, pOutData, pOutData); //rolloff audio above 15KHz
ProcessDeemphasisFilter(InLength, pOutData, pOutData); //50 or 75uSec de-emphasis one pole filter
m_NotchFilter.ProcessFilter( InLength, pOutData, pOutData); //notch out 19KHz pilot
return InLength;
}
/////////////////////////////////////////////////////////////////////////////////
// Iniitalize variables for FM Pilot PLL
/////////////////////////////////////////////////////////////////////////////////
void CWFmDemod::InitPilotPll( TYPEREAL SampleRate )
{
m_PilotNcoPhase = 0.0;
m_PilotNcoFreq = -PILOTPLL_FREQ; //freq offset to bring to baseband
TYPEREAL norm = K_2PI/SampleRate; //to normalize Hz to radians
//initialize the PLL
m_PilotNcoLLimit = (m_PilotNcoFreq-PILOTPLL_RANGE) * norm; //clamp FM PLL NCO
m_PilotNcoHLimit = (m_PilotNcoFreq+PILOTPLL_RANGE) * norm;
m_PilotPllAlpha = 2.0*PILOTPLL_ZETA*PILOTPLL_BW * norm;
m_PilotPllBeta = (m_PilotPllAlpha * m_PilotPllAlpha)/(4.0*PILOTPLL_ZETA*PILOTPLL_ZETA);
m_PhaseErrorMagAve = 0.0;
m_PhaseErrorMagAlpha = (1.0-MEXP(-1.0/(m_SampleRate*LOCK_TIMECONST)) );
}
/////////////////////////////////////////////////////////////////////////////////
// Process IQ wide FM data to lock Pilot PLL
//returns true if Locked. Fills m_PilotPhase[] with locked 19KHz NCO phase data
/////////////////////////////////////////////////////////////////////////////////
bool CWFmDemod::ProcessPilotPll( int InLength, TYPECPX* pInData )
{
TYPEREAL Sin;
TYPEREAL Cos;
TYPECPX tmp;
//StartPerformance();
//m_PilotPhaseAdjust = g_TestValue;
for(int i=0; i<InLength; i++) //175 nSec
{
Sin = MSIN(m_PilotNcoPhase); //178ns for sin/cos calc
Cos = MCOS(m_PilotNcoPhase);
//complex multiply input sample by NCO's sin and cos
tmp.re = Cos * pInData[i].re - Sin * pInData[i].im;
tmp.im = Cos * pInData[i].im + Sin * pInData[i].re;
//find current sample phase after being shifted by NCO frequency
TYPEREAL phzerror = -arctan2(tmp.im, tmp.re);
//create new NCO frequency term
m_PilotNcoFreq += (m_PilotPllBeta * phzerror); // radians per sampletime
//clamp NCO frequency so doesn't get out of lock range
if(m_PilotNcoFreq > m_PilotNcoHLimit)
m_PilotNcoFreq = m_PilotNcoHLimit;
else if(m_PilotNcoFreq < m_PilotNcoLLimit)
m_PilotNcoFreq = m_PilotNcoLLimit;
//update NCO phase with new value
m_PilotNcoPhase += (m_PilotNcoFreq + m_PilotPllAlpha * phzerror);
m_PilotPhase[i] = m_PilotNcoPhase + m_PilotPhaseAdjust; //phase fudge for exact phase delay
//create long average of error magnitude for lock detection
m_PhaseErrorMagAve = (1.0-m_PhaseErrorMagAlpha)*m_PhaseErrorMagAve + m_PhaseErrorMagAlpha*phzerror*phzerror;
}
m_PilotNcoPhase = MFMOD(m_PilotNcoPhase, K_2PI); //keep radian counter bounded
//StopPerformance(InLength);
if(m_PhaseErrorMagAve < LOCK_MAG_THRESHOLD)
return true;
else
return false;
}
/////////////////////////////////////////////////////////////////////////////////
// Get present Stereo lock status and put in pPilotLock.
// Returns true if lock status has changed since last call.
/////////////////////////////////////////////////////////////////////////////////
int CWFmDemod::GetStereoLock(int* pPilotLock)
{
if(pPilotLock)
*pPilotLock = m_PilotLocked;
if(m_PilotLocked != m_LastPilotLocked)
{
m_LastPilotLocked = m_PilotLocked;
return true;
}
else
return false;
}
/////////////////////////////////////////////////////////////////////////////////
// Iniitalize IIR variables for De-emphasis IIR filter.
/////////////////////////////////////////////////////////////////////////////////
void CWFmDemod::InitDeemphasis( TYPEREAL Time, TYPEREAL SampleRate) //create De-emphasis LP filter
{
m_DeemphasisAlpha = (1.0-MEXP(-1.0/(SampleRate*Time)) );
m_DeemphasisAveRe = 0.0;
m_DeemphasisAveIm = 0.0;
}
/////////////////////////////////////////////////////////////////////////////////
// Process InLength InBuf[] samples and place in OutBuf[]
//REAL version
/////////////////////////////////////////////////////////////////////////////////
void CWFmDemod::ProcessDeemphasisFilter(int InLength, TYPEREAL* InBuf, TYPEREAL* OutBuf)
{
for(int i=0; i<InLength; i++)
{
m_DeemphasisAveRe = (1.0-m_DeemphasisAlpha)*m_DeemphasisAveRe + m_DeemphasisAlpha*InBuf[i];
OutBuf[i] = m_DeemphasisAveRe*2.0;
}
}
/////////////////////////////////////////////////////////////////////////////////
// Process InLength InBuf[] samples and place in OutBuf[]
//complex (stereo) version
/////////////////////////////////////////////////////////////////////////////////
void CWFmDemod::ProcessDeemphasisFilter(int InLength, TYPECPX* InBuf, TYPECPX* OutBuf)
{
for(int i=0; i<InLength; i++)
{
m_DeemphasisAveRe = (1.0-m_DeemphasisAlpha)*m_DeemphasisAveRe + m_DeemphasisAlpha*InBuf[i].re;
m_DeemphasisAveIm = (1.0-m_DeemphasisAlpha)*m_DeemphasisAveIm + m_DeemphasisAlpha*InBuf[i].im;
OutBuf[i].re = m_DeemphasisAveRe*2.0;
OutBuf[i].im = m_DeemphasisAveIm*2.0;
}
}
/////////////////////////////////////////////////////////////////////////////////
// Initialize variables for RDS PLL and matched filter
/////////////////////////////////////////////////////////////////////////////////
void CWFmDemod::InitRds( TYPEREAL SampleRate )
{
m_RdsNcoPhase = 0.0;
m_RdsNcoFreq = 0.0; //freq offset to bring to baseband
//Create complex LP filter of RDS signal with 2400Hz passband
m_RdsBPFilter.InitLPFilter(0, 1.0,40.0, 2400.0,1.3*2400.0, m_RdsOutputRate);
TYPEREAL norm = K_2PI/SampleRate; //to normalize Hz to radians
//initialize the PLL that is used to de-rotate the rds DSB signal
m_RdsNcoLLimit = (m_RdsNcoFreq-RDSPLL_RANGE) * norm; //clamp RDS PLL NCO
m_RdsNcoHLimit = (m_RdsNcoFreq+RDSPLL_RANGE) * norm;
m_RdsPllAlpha = 2.0*RDSPLL_ZETA*RDSPLL_BW * norm;
m_RdsPllBeta = (m_RdsPllAlpha * m_RdsPllAlpha)/(4.0*RDSPLL_ZETA*RDSPLL_ZETA);
//create matched filter to extract bi-phase bits
// This is basically the time domain shape of a single bi-phase bit
// as defined for RDS and is close to a single cycle sine wave in shape
m_MatchCoefLength = SampleRate / RDS_BITRATE;
for(int i= 0; i<=m_MatchCoefLength; i++)
{
TYPEREAL t = (TYPEREAL)i/(SampleRate);
TYPEREAL x = t*RDS_BITRATE;
TYPEREAL x64 = 64.0*x;
m_RdsMatchCoef[i+m_MatchCoefLength] = .75*MCOS(2.0*K_2PI*x)*( (1.0/(1.0/x-x64)) -
(1.0/(9.0/x-x64)) );
m_RdsMatchCoef[m_MatchCoefLength-i] = -.75*MCOS(2.0*K_2PI*x)*( (1.0/(1.0/x-x64)) -
(1.0/(9.0/x-x64)) );
}
m_MatchCoefLength *= 2;
//load the matched filter coef into FIR filter
m_RdsMatchedFilter.InitConstFir(m_MatchCoefLength, m_RdsMatchCoef, SampleRate);
//create Hi-Q resonator at the bit rate to recover bit sync position Q==500
m_RdsBitSyncFilter.InitBP(RDS_BITRATE, 500, SampleRate);
//initialize a bunch of variables pertaining to the rds decoder
m_RdsLastSync = 0.0;
m_RdsLastSyncSlope = 0.0;
m_RdsQHead = 0;
m_RdsQTail = 0;
m_RdsLastBit = 0;
m_CurrentBitPosition = 0;
m_CurrentBlock = BLOCK_A;
m_DecodeState = STATE_BITSYNC;
m_BGroupOffset = 0;
m_LastRdsGroup.BlockA = 0;
m_LastRdsGroup.BlockB = 0;
m_LastRdsGroup.BlockC = 0;
m_LastRdsGroup.BlockD = 0;
}
/////////////////////////////////////////////////////////////////////////////////
// Process I/Q RDS baseband stream to lock PLL
/////////////////////////////////////////////////////////////////////////////////
void CWFmDemod::ProcessRdsPll( int InLength, TYPECPX* pInData, TYPEREAL* pOutData )
{
TYPEREAL Sin;
TYPEREAL Cos;
TYPECPX tmp;
for(int i=0; i<InLength; i++)
{
Sin = MSIN(m_RdsNcoPhase); //178ns for sin/cos calc
Cos = MCOS(m_RdsNcoPhase);
//complex multiply input sample by NCO's sin and cos
tmp.re = Cos * pInData[i].re - Sin * pInData[i].im;
tmp.im = Cos * pInData[i].im + Sin * pInData[i].re;
//find current sample phase after being shifted by NCO frequency
TYPEREAL phzerror = -arctan2(tmp.im, tmp.re);
//create new NCO frequency term
m_RdsNcoFreq += (m_RdsPllBeta * phzerror); // radians per sampletime
//clamp NCO frequency so doesn't get out of lock range
if(m_RdsNcoFreq > m_RdsNcoHLimit)
m_RdsNcoFreq = m_RdsNcoHLimit;
else if(m_RdsNcoFreq < m_RdsNcoLLimit)
m_RdsNcoFreq = m_RdsNcoLLimit;
//update NCO phase with new value
m_RdsNcoPhase += (m_RdsNcoFreq + m_RdsPllAlpha * phzerror);
pOutData[i] = tmp.im;
}
m_RdsNcoPhase = MFMOD(m_RdsNcoPhase, K_2PI); //keep radian counter bounded
//g_pTestBench->DisplayData(InLength, 1.0, m_RdsData, m_RdsOutputRate, PROFILE_6);
}
/////////////////////////////////////////////////////////////////////////////////
// Process one new bit from RDS data stream.
// Manages state machine to find block data bit position, runs chksum and FEC on
// each block, recovers good groups of 4 data blocks and places in data queue
// for further upper level GUI processing depending on the application
/////////////////////////////////////////////////////////////////////////////////
void CWFmDemod::ProcessNewRdsBit(int bit)
{
m_InBitStream = (m_InBitStream<<1) | bit; //shift in new bit
switch(m_DecodeState)
{
case STATE_BITSYNC: //looking at each bit position till we find a "good" block A
if( 0 == CheckBlock(OFFSET_SYNDROME_BLOCK_A, false) )
{ //got initial good chkword on Block A not using FEC
m_CurrentBitPosition = 0;
m_BGroupOffset = 0;
m_BlockData[BLOCK_A] = m_InBitStream>>NUMBITS_CRC;
m_CurrentBlock = BLOCK_B;
m_DecodeState = STATE_BLOCKSYNC; //next state is looking for blocks B,C, and D in sequence
}
break;
case STATE_BLOCKSYNC: //Looking for 4 blocks in correct sequence to have good probability bit position is good
m_CurrentBitPosition++;
if(m_CurrentBitPosition >= NUMBITS_BLOCK)
{
m_CurrentBitPosition = 0;
if( CheckBlock(BLK_OFFSET_TBL[m_CurrentBlock+m_BGroupOffset], false ) )
{ //bad chkword so go look for bit sync again
m_DecodeState = STATE_BITSYNC;
}
else
{ //good chkword so save data and setup for next block
m_BlockData[m_CurrentBlock] = m_InBitStream>>NUMBITS_CRC; //save msg data
//see if is group A or Group B
if( (BLOCK_B == m_CurrentBlock) && (m_BlockData[m_CurrentBlock] & GROUPB_BIT) )
m_BGroupOffset = 4;
else
m_BGroupOffset = 0;
if(m_CurrentBlock >= BLOCK_D)
{ //good chkword on all 4 blocks in correct sequence so are sure of bit position
//Place all group data into data queue
m_RdsGroupQueue[m_RdsQHead].BlockA = m_BlockData[BLOCK_A];
m_RdsGroupQueue[m_RdsQHead].BlockB = m_BlockData[BLOCK_B];
m_RdsGroupQueue[m_RdsQHead].BlockC = m_BlockData[BLOCK_C];
m_RdsGroupQueue[m_RdsQHead++].BlockD = m_BlockData[BLOCK_D];
if(m_RdsQHead >= RDS_Q_SIZE )
m_RdsQHead = 0;
m_CurrentBlock = BLOCK_A;
m_BlockErrors = 0;
m_DecodeState = STATE_GROUPDECODE;
qDebug()<<"RDS Blk Sync";
}
else
m_CurrentBlock++;
}
}
break;
case STATE_GROUPDECODE: //here after getting a good sequence of blocks
m_CurrentBitPosition++;
if(m_CurrentBitPosition>=NUMBITS_BLOCK)
{
m_CurrentBitPosition = 0;
if( CheckBlock(BLK_OFFSET_TBL[m_CurrentBlock+m_BGroupOffset], USE_FEC ) )
{
m_BlockErrors++;
if( m_BlockErrors > BLOCK_ERROR_LIMIT )
{
m_RdsQHead = m_RdsQTail = 0; //clear data queue
m_RdsGroupQueue[m_RdsQHead].BlockA = 0; //stuff all zeros in que to indicate
m_RdsGroupQueue[m_RdsQHead].BlockB = 0; //loss of signal
m_RdsGroupQueue[m_RdsQHead].BlockC = 0;
m_RdsGroupQueue[m_RdsQHead++].BlockD = 0;
m_DecodeState = STATE_BITSYNC;
}
else
{
m_CurrentBlock++;
if(m_CurrentBlock>BLOCK_D)
m_CurrentBlock = BLOCK_A;
if( BLOCK_A != m_CurrentBlock ) //skip remaining blocks of this group if error
m_DecodeState = STATE_GROUPRESYNC;
}
}
else
{ //good block so save and get ready for next one
m_BlockData[m_CurrentBlock] = m_InBitStream>>NUMBITS_CRC; //save msg data
//see if is group A or Group B
if( (BLOCK_B == m_CurrentBlock) && (m_BlockData[m_CurrentBlock] & GROUPB_BIT) )
m_BGroupOffset = 4;
else
m_BGroupOffset = 0;
m_CurrentBlock++;
if(m_CurrentBlock>BLOCK_D)
{
//Place all group data into data queue
m_RdsGroupQueue[m_RdsQHead].BlockA = m_BlockData[BLOCK_A];
m_RdsGroupQueue[m_RdsQHead].BlockB = m_BlockData[BLOCK_B];
m_RdsGroupQueue[m_RdsQHead].BlockC = m_BlockData[BLOCK_C];
m_RdsGroupQueue[m_RdsQHead++].BlockD = m_BlockData[BLOCK_D];
if(m_RdsQHead >= RDS_Q_SIZE )
m_RdsQHead = 0;
m_CurrentBlock = BLOCK_A;
m_BlockErrors = 0;
//qDebug("Grp %X %X %X %X",m_BlockData[BLOCK_A],m_BlockData[BLOCK_B],m_BlockData[BLOCK_C],m_BlockData[BLOCK_D]);
//here with complete good group
}
}
}
break;
case STATE_GROUPRESYNC: //ignor blocks until start of next group
m_CurrentBitPosition++;
if(m_CurrentBitPosition>=NUMBITS_BLOCK)
{
m_CurrentBitPosition = 0;
m_CurrentBlock++;
if(m_CurrentBlock>BLOCK_D)
{
m_CurrentBlock = BLOCK_A;
m_DecodeState = STATE_GROUPDECODE;
//qDebug()<<"Grp Resync";
}
}
break;
}
}
/////////////////////////////////////////////////////////////////////////////////
// Check block 'm_InBitStream' with 'BlockOffset' for errors.
// if UseFec is false then no FEC is done else correct up to 5 bits.
// Returns zero if no remaining errors if FEC is specified.
/////////////////////////////////////////////////////////////////////////////////
quint32 CWFmDemod::CheckBlock(quint32 SyndromeOffset, int UseFec)
{
//First calculate syndrome for current 26 m_InBitStream bits
quint32 testblock = (0x3FFFFFF & m_InBitStream); //isolate bottom 26 bits
//copy top 10 bits of block into 10 syndrome bits since first 10 rows
//of the check matrix is just an identity matrix(diagonal one's)
quint32 syndrome = testblock>>16;
for(int i=0; i<NUMBITS_MSG; i++)
{ //do the 16 remaining bits of the check matrix multiply
if(testblock&0x8000)
syndrome ^= PARCKH[i];
testblock <<= 1;
}
syndrome ^= SyndromeOffset; //add depending on desired block
if(syndrome && UseFec) //if errors and can use FEC
{
quint32 correctedbits = 0;
quint32 correctmask = (1<<(NUMBITS_BLOCK-1)); //start pointing to msg msb
//Run Meggitt FEC algorithm to correct up to 5 consecutive burst errors
for(int i=0; i<NUMBITS_MSG; i++)
{
if(syndrome & 0x200) //chk msbit of syndrome for error state
{ //is possible bit error at current position
if(0 == (syndrome & 0x1F) ) //bottom 5 bits == 0 tell it is correctable
{ // Correct i-th bit
m_InBitStream ^= correctmask;
correctedbits++;
syndrome <<= 1; //shift syndrome to next msb
}
else
{
syndrome <<= 1; //shift syndrome to next msb
syndrome ^= CRC_POLY; //recalculate new syndrome if bottom 5 bits not zero
} //and syndrome msb bit was a one
}
else
{ //no error at this bit position so just shift to next position
syndrome <<= 1; //shift syndrome to next msb
}
correctmask >>= 1; //advance correctable bit position
}
syndrome &= 0x3FF; //isolate syndrome bits if non-zero then still an error
if(correctedbits && !syndrome)
{
// qDebug()<<"corrected bits "<<correctedbits;
}
}
return syndrome;
}
/////////////////////////////////////////////////////////////////////////////////
// Get next group data from RDS data queue.
// Returns zero if queue is empty or null pointer passed or data has not changed
/////////////////////////////////////////////////////////////////////////////////
int CWFmDemod::GetNextRdsGroupData(tRDS_GROUPS* pGroupData)
{
if( (m_RdsQHead == m_RdsQTail) || (NULL == pGroupData) )
{
return 0;
}
pGroupData->BlockA = m_RdsGroupQueue[m_RdsQTail].BlockA;
pGroupData->BlockB = m_RdsGroupQueue[m_RdsQTail].BlockB;
pGroupData->BlockC = m_RdsGroupQueue[m_RdsQTail].BlockC;
pGroupData->BlockD = m_RdsGroupQueue[m_RdsQTail++].BlockD;
if(m_RdsQTail >= RDS_Q_SIZE )
m_RdsQTail = 0;
if( (m_LastRdsGroup.BlockA != pGroupData->BlockA) ||
(m_LastRdsGroup.BlockB != pGroupData->BlockB) ||
(m_LastRdsGroup.BlockC != pGroupData->BlockC) ||
(m_LastRdsGroup.BlockD != pGroupData->BlockD) )
{
m_LastRdsGroup = *pGroupData;
return true;
}
else
return false;
}
/////////////////////////////////////////////////////////////////////////////////
// Less acurate but somewhat faster atan2() function
// |error| < 0.005
// Useful for plls but not for main FM demod if best audio quality desired.
/////////////////////////////////////////////////////////////////////////////////
inline TYPEREAL CWFmDemod::arctan2(TYPEREAL y, TYPEREAL x)
{
TYPEREAL angle;
if( x == 0.0 )
{ //avoid divide by zero and just return angle
if( y > 0.0 ) return K_PI2;
if( y == 0.0 ) return 0.0;
return -K_PI2;
}
TYPEREAL z = y/x;
if( MFABS( z ) < 1.0 )
{
angle = z/(1.0 + 0.2854*z*z);
if( x < 0.0 )
{
if( y < 0.0 )
return angle - K_PI;
return angle + K_PI;
}
}
else
{
angle = K_PI2 - z/(z*z + 0.2854);
if( y < 0.0 )
return angle - K_PI;
}
return angle;
}
|