1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
// wfmdemod.cpp: implementation of the CWFmMod class.
//
// This class Wideband stereo FM modulation
//
// History:
// 2011-08-18 Initial creation MSW
// 2011-08-18 Initial release
// 2013-07-28 Added single/double precision math macros
//////////////////////////////////////////////////////////////////////
//==========================================================================================
// + + + This Software is released under the "Simplified BSD License" + + +
//Copyright 2011 Moe Wheatley. All rights reserved.
//
//Redistribution and use in source and binary forms, with or without modification, are
//permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this list of
// conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
// of conditions and the following disclaimer in the documentation and/or other materials
// provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY Moe Wheatley ``AS IS'' AND ANY EXPRESS OR IMPLIED
//WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
//FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Moe Wheatley OR
//CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
//SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
//ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//The views and conclusions contained in the software and documentation are those of the
//authors and should not be interpreted as representing official policies, either expressed
//or implied, of Moe Wheatley.
//==========================================================================================
#include "wfmmod.h"
#include "gui/testbench.h"
#include "dsp/datatypes.h"
#include "dsp/rbdsconstants.h"
#include <QFile>
#include <QDir>
#include <QDebug>
#define PILOT_FREQ 19000.0
#define DEVIATION_FREQ 75000.0
#define PILOT_LEVEL 0.1
#define AUDIO_LEVEL 0.9
#define RDS_LEVEL 0.0267
#define LEFT_FREQ 440.0
#define RIGHT_FREQ 666.0
#define STATE_TIME 2 //seconds
#define RDS_PICODE 0x75C8 //WMOE
#define RDS_GRPTYPE_0A (0<<12) //Basic tuning info
#define RDS_PTYCODE (13<<5) //Program type nostalgia
/////////////////////////////////////////////////////////////////////////////////
// Construct WFM demod object
/////////////////////////////////////////////////////////////////////////////////
CWFmMod::CWFmMod()
{
m_PilotAcc = 0.0;
m_LeftAcc = 0.0;
m_RightAcc = 0.0;
m_ModAcc = 0.0;
SetSampleRate(200000.0);
StateTimer = 0;
ModState = 0;
TimerPeriod = 100000;
m_SweepFreqNorm = 1.0;
m_SweepFrequency = 0.0;
m_SweepStopFrequency = 0.0;
m_SweepRateInc = 0.0;
m_LeftAmp = 1.0;
m_RightAmp = 1.0;
}
/////////////////////////////////////////////////////////////////////////////////
// Initialize variables with given SampleRate
/////////////////////////////////////////////////////////////////////////////////
void CWFmMod::SetSampleRate(TYPEREAL SampleRate)
{
m_SampleRate = SampleRate;
m_PilotInc = PILOT_FREQ*K_2PI/m_SampleRate;
m_LeftInc = LEFT_FREQ*K_2PI/m_SampleRate;
m_RightInc = RIGHT_FREQ*K_2PI/m_SampleRate;
m_DeviationRate = DEVIATION_FREQ*K_2PI/m_SampleRate;
TimerPeriod = STATE_TIME*SampleRate;
StateTimer = TimerPeriod;
ModState = 0;
InitRDS();
}
/////////////////////////////////////////////////////////////////////////////////
// Set Sweep generator settings
/////////////////////////////////////////////////////////////////////////////////
void CWFmMod::SetSweep(TYPEREAL SweepFreqNorm, TYPEREAL SweepFrequency, TYPEREAL SweepStopFrequency, TYPEREAL SweepRateInc)
{
m_SweepFreqNorm = SweepFreqNorm;
m_SweepFrequency = SweepFrequency;
m_SweepStopFrequency = SweepStopFrequency;
m_SweepRateInc = SweepRateInc;
}
/////////////////////////////////////////////////////////////////////////////////
// Process WFM Mod STEREO version
/////////////////////////////////////////////////////////////////////////////////
void CWFmMod::GenerateData(int Length, TYPEREAL Amplitude, TYPECPX* pOutData)
{
TYPEREAL mod;
CreateRdsSamples(Length, m_RdsOut);
for(int i=0; i<Length; i++)
{
#if 1
m_LeftAcc += m_LeftInc; //create left and right channel test tone increment
m_RightAcc += m_RightInc;
m_PilotAcc += m_PilotInc; //create pilot freq increment
mod = (m_LeftAmp*MSIN(m_LeftAcc) + m_RightAmp*MSIN(m_RightAcc))/2.0; //mono component
mod += ( (m_LeftAmp*MSIN(m_LeftAcc) - m_RightAmp*MSIN(m_RightAcc))/2.0) * MSIN(m_PilotAcc*2.0 ); //DSB left-right component
mod *= AUDIO_LEVEL;
mod += ( PILOT_LEVEL*MSIN(m_PilotAcc) ); //add pilot tone
mod += ( RDS_LEVEL*m_RdsOut[i]*MSIN(m_PilotAcc*3.0) ); //add RDS data
#else //sweep pilot tone for testing
m_PilotAcc += ( m_SweepFrequency*m_SweepFreqNorm );
m_SweepFrequency += m_SweepRateInc; //inc sweep frequency
if(m_SweepFrequency >= m_SweepStopFrequency) //reached end of sweep?
m_SweepRateInc = 0.0; //stop sweep when end is reached
mod = MSIN(m_PilotAcc); //sweep pilot tone for testing
#endif
m_ModAcc += (mod*m_DeviationRate);
pOutData[i].re = Amplitude*MCOS(m_ModAcc);
pOutData[i].im = Amplitude*MSIN(m_ModAcc);
}
while(m_PilotAcc>K_2PI)
m_PilotAcc -= K_2PI;
while(m_LeftAcc>K_2PI)
m_LeftAcc -= K_2PI;
while(m_RightAcc>K_2PI)
m_RightAcc -= K_2PI;
while(m_ModAcc>K_2PI)
m_ModAcc -= K_2PI;
while(m_ModAcc < -K_2PI)
m_ModAcc += K_2PI;
#if 1 //state machine for stereo testing
if(StateTimer++ > TimerPeriod/Length)
{
StateTimer = 0;
switch(ModState)
{
case 0:
m_LeftAmp = 1.0;
m_RightAmp = 0.0;
ModState = 1;
break;
case 1:
m_LeftAmp = 0.0;
m_RightAmp = 1.0;
ModState = 2;
break;
case 2:
m_LeftAmp = 1.0;
m_RightAmp = 1.0;
ModState = 3;
break;
case 3:
m_LeftAmp = 0.0;
m_RightAmp = 0.0;
ModState = 0;
break;
}
}
#endif
}
/////////////////////////////////////////////////////////////////////////////////
// Initialize RDS generator variables
/////////////////////////////////////////////////////////////////////////////////
void CWFmMod::InitRDS()
{
//create impulse response of bi-phase bits
// This is basically the time domain shape of a single bi-phase bit
// as defined for RDS and is close to a single cycle sine wave in shape
m_RdsPulseLength = m_SampleRate / RDS_BITRATE;
int Period = (int)(m_RdsPulseLength + .5);
for(int i= 0; i<= Period; i++)
{
TYPEREAL t = (TYPEREAL)i/(m_SampleRate);
TYPEREAL x = t*RDS_BITRATE;
TYPEREAL x64 = 64.0*x;
m_RdsPulseCoef[i+Period] = .75*MCOS(2.0*K_2PI*x)*( (1.0/(1.0/x-x64)) -
(1.0/(9.0/x-x64)) );
m_RdsPulseCoef[Period-i] = -.75*MCOS(2.0*K_2PI*x)*( (1.0/(1.0/x-x64)) -
(1.0/(9.0/x-x64)) );
}
m_RdsPulseLength *= 2.0;
m_RdsTime = 0.0;
m_RdsSamplePeriod = 1.0/m_SampleRate;
m_RdsD1 = 1;
m_RdsD2 = 1;
#if 0 //debug hack to write m_RdsPulseCoef to a file for analysis
QDir::setCurrent("d:/");
QFile File;
File.setFileName("rdscoef.txt");
if(File.open(QIODevice::WriteOnly))
{
qDebug()<<"file Opened OK";
char Buf[256];
for(int n=0; n<Period*2; n++)
{
sprintf( Buf, "%g\r\n", m_RdsPulseCoef[n]);
File.write(Buf);
}
}
else
qDebug()<<"file Failed to Open";
#endif
//create some RDS messages for testing
m_RdsBufLength = 0;
m_RdsBitPtr = (1<<25);
for(int i= 0; i<1; i++)
{
CreateRdsGroup(RDS_PICODE, RDS_GRPTYPE_0A|RDS_PTYCODE ,0x5A5A, 0xA5A5);
}
m_RdsBufPos = 0;
m_RdsLastBit = 1;
}
/////////////////////////////////////////////////////////////////////////////////
// Create a 4 block group from the parameters and create check words
//Group data is placed in m_RdsDataBuf[] for continuous transmitting
/////////////////////////////////////////////////////////////////////////////////
void CWFmMod::CreateRdsGroup(quint16 Blk1, quint16 Blk2, quint16 Blk3, quint16 Blk4)
{
m_RdsDataBuf[m_RdsBufLength++] = CreateBlockWithCheckword(Blk1, OFFSET_WORD_BLOCK_A);
m_RdsDataBuf[m_RdsBufLength++] = CreateBlockWithCheckword(Blk2, OFFSET_WORD_BLOCK_B);
if(Blk2&GROUPB_BIT)
m_RdsDataBuf[m_RdsBufLength++] = CreateBlockWithCheckword(Blk3, OFFSET_WORD_BLOCK_CP);
else
m_RdsDataBuf[m_RdsBufLength++] = CreateBlockWithCheckword(Blk3, OFFSET_WORD_BLOCK_C);
m_RdsDataBuf[m_RdsBufLength++] = CreateBlockWithCheckword(Blk4, OFFSET_WORD_BLOCK_D);
}
/////////////////////////////////////////////////////////////////////////////////
// Create data blk with chkword from 16 bit 'Data' with 'BlockOffset'.
// Returns 26 bit block with check word.
/////////////////////////////////////////////////////////////////////////////////
quint32 CWFmMod::CreateBlockWithCheckword(quint16 Data, quint32 BlockOffset)
{
quint32 block = (quint32)Data<<10; //put 16 msg data bits into block
for(int i=0; i<NUMBITS_MSG; i++)
{ //do matrix operation on data bits 15 to 0
//Since generator matrix is in a systematic form
//(first 16 columns are a diagonal identity matrix),
//just XOR from table where message bit is a one.
if(Data & 0x8000) //if msg bit 15 is 1, XOR with generator matrix value
block = block ^ CHKWORDGEN[i];
Data <<= 1; //go to next bit position
}
block = block ^ BlockOffset; //add in block offset word
return block;
}
/////////////////////////////////////////////////////////////////////////////////
// Creates 'InLength' real samples of RDS modulation data at m_SampleRate.
// Calls 'CreateNextRdsBit()' every bit time to fetch the next source data bit.
// 'm_RdsTime' is a floating point time variable that is used to create the integer
// table index's since table length is not exact multiple of data period.
/////////////////////////////////////////////////////////////////////////////////
void CWFmMod::CreateRdsSamples(int InLength , TYPEREAL* pBuf)
{
int n1;
int n2;
TYPEREAL rdsperiod = 1.0/RDS_BITRATE;
TYPEREAL rds2period = 2.0/RDS_BITRATE;
for(int i= 0; i<InLength; i++)
{
n1 = (int)( m_RdsTime * m_SampleRate); //create integer index
//calculate index positions of both pointers
if(m_RdsTime > rdsperiod)
n2 = (int)( (m_RdsTime-rdsperiod) * m_SampleRate);
else
n2 = (int)( (m_RdsTime+rdsperiod) * m_SampleRate);
//if a pointer wraps to zero, get next new data bit value
if(0==n1)
m_RdsD1 = CreateNextRdsBit();
if(0==n2)
m_RdsD2 = CreateNextRdsBit();
//get both table values and add togehter for output sample value
pBuf[i] = m_RdsD1*m_RdsPulseCoef[n1] + m_RdsD2*m_RdsPulseCoef[n2];
//manage running floating point time position
m_RdsTime += m_RdsSamplePeriod;
if(m_RdsTime >= rds2period)
m_RdsTime -= rds2period;
}
}
/////////////////////////////////////////////////////////////////////////////////
// Gets next data bit from m_RdsDataBuf[] and converts to a + or - 1.0 value
// used by CreateRdsSamples() to produce the modulation waveform
/////////////////////////////////////////////////////////////////////////////////
TYPEREAL CWFmMod::CreateNextRdsBit()
{
int bit;
//get next bit from 26 bit wide buffer msbit first
if( m_RdsBitPtr & m_RdsDataBuf[m_RdsBufPos] )
bit = 1;
else
bit = 0;
m_RdsBitPtr >>= 1; //shift bit pointer to next bit
if(0 == m_RdsBitPtr)
{ //reached end of 26bit word so go to next word in m_RdsDataBuf[]
m_RdsBitPtr = (1<<25);
m_RdsBufPos++;
if(m_RdsBufPos >= m_RdsBufLength)
m_RdsBufPos = 0; //reached end of m_RdsDataBuf[] so start over
}
//differential encode output bit by XOR with previous output bit
//return +1.0 for a '1' and -1.0 for a '0'
if( m_RdsLastBit ^ bit )
{
m_RdsLastBit = 1;
return 1.0;
}
else
{
m_RdsLastBit = 0;
return -1.0;
}
}
|