File: wfmmod.cpp

package info (click to toggle)
cutesdr 1.20-4
  • links: PTS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 2,848 kB
  • sloc: cpp: 18,902; makefile: 21; sh: 5
file content (345 lines) | stat: -rw-r--r-- 11,943 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// wfmdemod.cpp: implementation of the CWFmMod class.
//
//  This class Wideband stereo FM modulation
//
// History:
//	2011-08-18  Initial creation MSW
//	2011-08-18  Initial release
//	2013-07-28  Added single/double precision math macros
//////////////////////////////////////////////////////////////////////

//==========================================================================================
// + + +   This Software is released under the "Simplified BSD License"  + + +
//Copyright 2011 Moe Wheatley. All rights reserved.
//
//Redistribution and use in source and binary forms, with or without modification, are
//permitted provided that the following conditions are met:
//
//   1. Redistributions of source code must retain the above copyright notice, this list of
//	  conditions and the following disclaimer.
//
//   2. Redistributions in binary form must reproduce the above copyright notice, this list
//	  of conditions and the following disclaimer in the documentation and/or other materials
//	  provided with the distribution.
//
//THIS SOFTWARE IS PROVIDED BY Moe Wheatley ``AS IS'' AND ANY EXPRESS OR IMPLIED
//WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
//FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL Moe Wheatley OR
//CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
//CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
//SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
//ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
//NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
//ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
//The views and conclusions contained in the software and documentation are those of the
//authors and should not be interpreted as representing official policies, either expressed
//or implied, of Moe Wheatley.
//==========================================================================================
#include "wfmmod.h"
#include "gui/testbench.h"
#include "dsp/datatypes.h"
#include "dsp/rbdsconstants.h"
#include <QFile>
#include <QDir>
#include <QDebug>

#define PILOT_FREQ 19000.0
#define DEVIATION_FREQ 75000.0

#define PILOT_LEVEL 0.1
#define AUDIO_LEVEL 0.9
#define RDS_LEVEL 0.0267

#define LEFT_FREQ 440.0
#define RIGHT_FREQ 666.0

#define STATE_TIME 2	//seconds

#define RDS_PICODE 0x75C8		//WMOE
#define RDS_GRPTYPE_0A (0<<12)	//Basic tuning info
#define RDS_PTYCODE (13<<5)		//Program type nostalgia


/////////////////////////////////////////////////////////////////////////////////
//	Construct WFM demod object
/////////////////////////////////////////////////////////////////////////////////
CWFmMod::CWFmMod()
{
	m_PilotAcc = 0.0;
	m_LeftAcc = 0.0;
	m_RightAcc = 0.0;
	m_ModAcc = 0.0;
	SetSampleRate(200000.0);
	StateTimer = 0;
	ModState = 0;
	TimerPeriod = 100000;
	m_SweepFreqNorm = 1.0;
	m_SweepFrequency = 0.0;
	m_SweepStopFrequency = 0.0;
	m_SweepRateInc = 0.0;
	m_LeftAmp = 1.0;
	m_RightAmp = 1.0;
}

/////////////////////////////////////////////////////////////////////////////////
//	Initialize variables with given SampleRate
/////////////////////////////////////////////////////////////////////////////////
void CWFmMod::SetSampleRate(TYPEREAL SampleRate)
{
	m_SampleRate = SampleRate;

	m_PilotInc = PILOT_FREQ*K_2PI/m_SampleRate;
	m_LeftInc = LEFT_FREQ*K_2PI/m_SampleRate;
	m_RightInc = RIGHT_FREQ*K_2PI/m_SampleRate;
	m_DeviationRate = DEVIATION_FREQ*K_2PI/m_SampleRate;

	TimerPeriod = STATE_TIME*SampleRate;
	StateTimer = TimerPeriod;
	ModState = 0;
	InitRDS();
}

/////////////////////////////////////////////////////////////////////////////////
//	Set Sweep generator settings
/////////////////////////////////////////////////////////////////////////////////
void CWFmMod::SetSweep(TYPEREAL SweepFreqNorm, TYPEREAL SweepFrequency, TYPEREAL SweepStopFrequency, TYPEREAL SweepRateInc)
{
	m_SweepFreqNorm = SweepFreqNorm;
	m_SweepFrequency = SweepFrequency;
	m_SweepStopFrequency = SweepStopFrequency;
	m_SweepRateInc = SweepRateInc;

}

/////////////////////////////////////////////////////////////////////////////////
//	Process WFM Mod STEREO version
/////////////////////////////////////////////////////////////////////////////////
void CWFmMod::GenerateData(int Length, TYPEREAL Amplitude, TYPECPX* pOutData)
{
TYPEREAL mod;
	CreateRdsSamples(Length, m_RdsOut);
	for(int i=0; i<Length; i++)
	{
#if 1
		m_LeftAcc += m_LeftInc;			//create left and right channel test tone increment
		m_RightAcc += m_RightInc;
		m_PilotAcc += m_PilotInc;		//create pilot freq increment
		mod = (m_LeftAmp*MSIN(m_LeftAcc) + m_RightAmp*MSIN(m_RightAcc))/2.0;	//mono component
		mod += ( (m_LeftAmp*MSIN(m_LeftAcc) - m_RightAmp*MSIN(m_RightAcc))/2.0) * MSIN(m_PilotAcc*2.0 );	//DSB left-right component
		mod *= AUDIO_LEVEL;
		mod += ( PILOT_LEVEL*MSIN(m_PilotAcc) );			//add pilot tone
		mod += ( RDS_LEVEL*m_RdsOut[i]*MSIN(m_PilotAcc*3.0) );			//add RDS data
#else	//sweep pilot tone for testing
		m_PilotAcc += ( m_SweepFrequency*m_SweepFreqNorm );
		m_SweepFrequency += m_SweepRateInc;	//inc sweep frequency
		if(m_SweepFrequency >= m_SweepStopFrequency)	//reached end of sweep?
			m_SweepRateInc = 0.0;						//stop sweep when end is reached
		mod = MSIN(m_PilotAcc);			//sweep pilot tone for testing
#endif
		m_ModAcc += (mod*m_DeviationRate);
		pOutData[i].re = Amplitude*MCOS(m_ModAcc);
		pOutData[i].im = Amplitude*MSIN(m_ModAcc);
	}
	while(m_PilotAcc>K_2PI)
		m_PilotAcc -= K_2PI;
	while(m_LeftAcc>K_2PI)
		m_LeftAcc -= K_2PI;
	while(m_RightAcc>K_2PI)
		m_RightAcc -= K_2PI;
	while(m_ModAcc>K_2PI)
		m_ModAcc -= K_2PI;
	while(m_ModAcc < -K_2PI)
		m_ModAcc += K_2PI;
#if 1	//state machine for stereo testing
	if(StateTimer++ > TimerPeriod/Length)
	{
		StateTimer = 0;
		switch(ModState)
		{
			case 0:
				m_LeftAmp = 1.0;
				m_RightAmp = 0.0;
				ModState = 1;
				break;
			case 1:
				m_LeftAmp = 0.0;
				m_RightAmp = 1.0;
				ModState = 2;
				break;
			case 2:
				m_LeftAmp = 1.0;
				m_RightAmp = 1.0;
				ModState = 3;
				break;
			case 3:
				m_LeftAmp = 0.0;
				m_RightAmp = 0.0;
				ModState = 0;
				break;
		}
	}
#endif
}
 
/////////////////////////////////////////////////////////////////////////////////
//	Initialize RDS generator variables
/////////////////////////////////////////////////////////////////////////////////
void CWFmMod::InitRDS()
{
	//create impulse response of bi-phase bits
	// This is basically the time domain shape of a single bi-phase bit
	// as defined for RDS and is close to a single cycle sine wave in shape
	m_RdsPulseLength = m_SampleRate / RDS_BITRATE;
	int Period = (int)(m_RdsPulseLength + .5);
	for(int i= 0; i<= Period; i++)
	{
		TYPEREAL t = (TYPEREAL)i/(m_SampleRate);
		TYPEREAL x = t*RDS_BITRATE;
		TYPEREAL x64 = 64.0*x;
		m_RdsPulseCoef[i+Period] = .75*MCOS(2.0*K_2PI*x)*( (1.0/(1.0/x-x64)) -
								(1.0/(9.0/x-x64)) );
		m_RdsPulseCoef[Period-i] = -.75*MCOS(2.0*K_2PI*x)*( (1.0/(1.0/x-x64)) -
								(1.0/(9.0/x-x64)) );
	}
	m_RdsPulseLength *= 2.0;
	m_RdsTime = 0.0;
	m_RdsSamplePeriod = 1.0/m_SampleRate;
	m_RdsD1 = 1;
	m_RdsD2 = 1;

#if 0		//debug hack to write m_RdsPulseCoef to a file for analysis
	QDir::setCurrent("d:/");
	QFile File;
	File.setFileName("rdscoef.txt");
	if(File.open(QIODevice::WriteOnly))
	{
		qDebug()<<"file Opened OK";
		char Buf[256];
		for(int n=0; n<Period*2; n++)
		{
			sprintf( Buf, "%g\r\n", m_RdsPulseCoef[n]);
			File.write(Buf);
		}
	}
	else
		qDebug()<<"file Failed to Open";
#endif

	//create some RDS messages for testing
	m_RdsBufLength = 0;
	m_RdsBitPtr = (1<<25);
	for(int i= 0; i<1; i++)
	{
		CreateRdsGroup(RDS_PICODE, RDS_GRPTYPE_0A|RDS_PTYCODE ,0x5A5A, 0xA5A5);
	}
	m_RdsBufPos = 0;
	m_RdsLastBit = 1;
}

/////////////////////////////////////////////////////////////////////////////////
//	Create a 4 block group from the parameters and create check words
//Group data is placed in m_RdsDataBuf[] for continuous transmitting
/////////////////////////////////////////////////////////////////////////////////
void CWFmMod::CreateRdsGroup(quint16 Blk1, quint16 Blk2, quint16 Blk3, quint16 Blk4)
{
	m_RdsDataBuf[m_RdsBufLength++] = CreateBlockWithCheckword(Blk1, OFFSET_WORD_BLOCK_A);
	m_RdsDataBuf[m_RdsBufLength++] = CreateBlockWithCheckword(Blk2, OFFSET_WORD_BLOCK_B);
	if(Blk2&GROUPB_BIT)
		m_RdsDataBuf[m_RdsBufLength++] = CreateBlockWithCheckword(Blk3, OFFSET_WORD_BLOCK_CP);
	else
		m_RdsDataBuf[m_RdsBufLength++] = CreateBlockWithCheckword(Blk3, OFFSET_WORD_BLOCK_C);
	m_RdsDataBuf[m_RdsBufLength++] = CreateBlockWithCheckword(Blk4, OFFSET_WORD_BLOCK_D);
}

/////////////////////////////////////////////////////////////////////////////////
//	Create data blk with chkword from 16 bit 'Data' with 'BlockOffset'.
// Returns 26 bit block with check word.
/////////////////////////////////////////////////////////////////////////////////
quint32 CWFmMod::CreateBlockWithCheckword(quint16 Data, quint32 BlockOffset)
{
quint32 block = (quint32)Data<<10;	//put 16 msg data bits into block
	for(int i=0; i<NUMBITS_MSG; i++)
	{	//do matrix operation on data bits 15 to 0
		//Since generator matrix is in a systematic form
		//(first 16 columns are a diagonal identity matrix),
		//just XOR from table where message bit is a one.
		if(Data & 0x8000)	//if msg bit 15 is 1, XOR with generator matrix value
			block = block ^ CHKWORDGEN[i];
		Data <<= 1;		//go to next bit position
	}
	block = block ^ BlockOffset;	//add in block offset word
	return block;
}


/////////////////////////////////////////////////////////////////////////////////
//	Creates 'InLength' real samples of RDS modulation data at m_SampleRate.
//	Calls 'CreateNextRdsBit()' every bit time to fetch the next source data bit.
// 'm_RdsTime' is a floating point time variable that is used to create the integer
// table index's since table length is not exact multiple of data period.
/////////////////////////////////////////////////////////////////////////////////
void CWFmMod::CreateRdsSamples(int InLength , TYPEREAL* pBuf)
{
int n1;
int n2;
TYPEREAL rdsperiod = 1.0/RDS_BITRATE;
TYPEREAL rds2period = 2.0/RDS_BITRATE;
	for(int i= 0; i<InLength; i++)
	{
		n1 = (int)( m_RdsTime * m_SampleRate);	//create integer index
		//calculate index positions of both pointers
		if(m_RdsTime > rdsperiod)
			n2 = (int)( (m_RdsTime-rdsperiod) * m_SampleRate);
		else
			n2 = (int)( (m_RdsTime+rdsperiod) * m_SampleRate);
		//if a pointer wraps to zero, get next new data bit value
		if(0==n1)
			m_RdsD1 = CreateNextRdsBit();
		if(0==n2)
			m_RdsD2 = CreateNextRdsBit();
		//get both table values and add togehter for output sample value
		pBuf[i] = m_RdsD1*m_RdsPulseCoef[n1] + m_RdsD2*m_RdsPulseCoef[n2];
		//manage running floating point time position
		m_RdsTime += m_RdsSamplePeriod;
		if(m_RdsTime >= rds2period)
			m_RdsTime -= rds2period;
	}

}


/////////////////////////////////////////////////////////////////////////////////
//	Gets next data bit from m_RdsDataBuf[] and converts to a + or - 1.0 value
// used by CreateRdsSamples() to produce the modulation waveform
/////////////////////////////////////////////////////////////////////////////////
TYPEREAL CWFmMod::CreateNextRdsBit()
{
int bit;
	//get next bit from 26 bit wide buffer msbit first
	if( m_RdsBitPtr & m_RdsDataBuf[m_RdsBufPos] )
		bit = 1;
	else
		bit = 0;
	m_RdsBitPtr >>= 1;	//shift bit pointer  to next bit
	if(0 == m_RdsBitPtr)
	{	//reached end of 26bit word so go to next word in m_RdsDataBuf[]
		m_RdsBitPtr = (1<<25);
		m_RdsBufPos++;
		if(m_RdsBufPos >= m_RdsBufLength)
			m_RdsBufPos = 0;	//reached end of m_RdsDataBuf[] so start over
	}
	//differential encode output bit by XOR with previous output bit
	//return +1.0 for a '1' and -1.0 for a '0'
	if( m_RdsLastBit ^ bit )
	{
		m_RdsLastBit = 1;
		return 1.0;
	}
	else
	{
		m_RdsLastBit = 0;
		return -1.0;
	}
}