1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/********************* */
/*! \file datatypes.cpp
** \verbatim
** Top contributors (to current version):
** Morgan Deters, Aina Niemetz, Andrew Reynolds
** This file is part of the CVC4 project.
** Copyright (c) 2009-2020 by the authors listed in the file AUTHORS
** in the top-level source directory) and their institutional affiliations.
** All rights reserved. See the file COPYING in the top-level source
** directory for licensing information.\endverbatim
**
** \brief An example of using inductive datatypes in CVC4
**
** An example of using inductive datatypes in CVC4.
**/
#include <iostream>
#include <cvc4/cvc4.h>
using namespace CVC4;
int main() {
ExprManager em;
SmtEngine smt(&em);
// This example builds a simple "cons list" of integers, with
// two constructors, "cons" and "nil."
// Building a datatype consists of two steps. First, the datatype
// is specified. Second, it is "resolved"---at which point function
// symbols are assigned to its constructors, selectors, and testers.
Datatype consListSpec(&em, "list"); // give the datatype a name
DatatypeConstructor cons("cons");
cons.addArg("head", em.integerType());
cons.addArg("tail", DatatypeSelfType()); // a list
consListSpec.addConstructor(cons);
DatatypeConstructor nil("nil");
consListSpec.addConstructor(nil);
std::cout << "spec is:" << std::endl
<< consListSpec << std::endl;
// Keep in mind that "Datatype" is the specification class for
// datatypes---"Datatype" is not itself a CVC4 Type. Now that
// our Datatype is fully specified, we can get a Type for it.
// This step resolves the "SelfType" reference and creates
// symbols for all the constructors, etc.
DatatypeType consListType = em.mkDatatypeType(consListSpec);
// Now our old "consListSpec" is useless--the relevant information
// has been copied out, so we can throw that spec away. We can get
// the complete spec for the datatype from the DatatypeType, and
// this Datatype object has constructor symbols (and others) filled in.
const Datatype& consList = consListType.getDatatype();
// e = cons 0 nil
//
// Here, consList["cons"] gives you the DatatypeConstructor. To get
// the constructor symbol for application, use .getConstructor("cons"),
// which is equivalent to consList["cons"].getConstructor(). Note that
// "nil" is a constructor too, so it needs to be applied with
// APPLY_CONSTRUCTOR, even though it has no arguments.
Expr e = em.mkExpr(kind::APPLY_CONSTRUCTOR,
consList.getConstructor("cons"),
em.mkConst(Rational(0)),
em.mkExpr(kind::APPLY_CONSTRUCTOR,
consList.getConstructor("nil")));
std::cout << "e is " << e << std::endl
<< "type of cons is " << consList.getConstructor("cons").getType()
<< std::endl
<< "type of nil is " << consList.getConstructor("nil").getType()
<< std::endl;
// e2 = head(cons 0 nil), and of course this can be evaluated
//
// Here we first get the DatatypeConstructor for cons (with
// consList["cons"]) in order to get the "head" selector symbol
// to apply.
Expr e2 = em.mkExpr(kind::APPLY_SELECTOR,
consList["cons"].getSelector("head"),
e);
std::cout << "e2 is " << e2 << std::endl
<< "simplify(e2) is " << smt.simplify(e2)
<< std::endl << std::endl;
// You can also iterate over a Datatype to get all its constructors,
// and over a DatatypeConstructor to get all its "args" (selectors)
for(Datatype::iterator i = consList.begin(); i != consList.end(); ++i) {
std::cout << "ctor: " << *i << std::endl;
for(DatatypeConstructor::iterator j = (*i).begin(); j != (*i).end(); ++j) {
std::cout << " + arg: " << *j << std::endl;
}
}
std::cout << std::endl;
// You can also define parameterized datatypes.
// This example builds a simple parameterized list of sort T, with one
// constructor "cons".
Type sort = em.mkSort("T", ExprManager::SORT_FLAG_PLACEHOLDER);
Datatype paramConsListSpec(&em, "list", std::vector<Type>{sort});
DatatypeConstructor paramCons("cons");
DatatypeConstructor paramNil("nil");
paramCons.addArg("head", sort);
paramCons.addArg("tail", DatatypeSelfType());
paramConsListSpec.addConstructor(paramCons);
paramConsListSpec.addConstructor(paramNil);
DatatypeType paramConsListType = em.mkDatatypeType(paramConsListSpec);
Type paramConsIntListType = paramConsListType.instantiate(std::vector<Type>{em.integerType()});
const Datatype& paramConsList = paramConsListType.getDatatype();
std::cout << "parameterized datatype sort is " << std::endl;
for (const DatatypeConstructor& ctor : paramConsList)
{
std::cout << "ctor: " << ctor << std::endl;
for (const DatatypeConstructorArg& stor : ctor)
{
std::cout << " + arg: " << stor << std::endl;
}
}
Expr a = em.mkVar("a", paramConsIntListType);
std::cout << "Expr " << a << " is of type " << a.getType() << std::endl;
Expr head_a = em.mkExpr(
kind::APPLY_SELECTOR,
paramConsList["cons"].getSelector("head"),
a);
std::cout << "head_a is " << head_a << " of type " << head_a.getType()
<< std::endl
<< "type of cons is "
<< paramConsList.getConstructor("cons").getType() << std::endl
<< std::endl;
Expr assertion = em.mkExpr(kind::GT, head_a, em.mkConst(Rational(50)));
std::cout << "Assert " << assertion << std::endl;
smt.assertFormula(assertion);
std::cout << "Expect sat." << std::endl;
std::cout << "CVC4: " << smt.checkSat()<< std::endl;
return 0;
}
|