1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
|
/********************* */
/*! \file BitVectorsAndArrays.java
** \verbatim
** Top contributors (to current version):
** Morgan Deters, Liana Hadarean, Andres Noetzli
** This file is part of the CVC4 project.
** Copyright (c) 2009-2020 by the authors listed in the file AUTHORS
** in the top-level source directory) and their institutional affiliations.
** All rights reserved. See the file COPYING in the top-level source
** directory for licensing information.\endverbatim
**
** \brief A simple demonstration of the solving capabilities of the CVC4
** bit-vector and array solvers.
**
**/
import edu.stanford.CVC4.*;
import java.util.*;
public class BitVectorsAndArrays {
private static int log2(int n) {
return (int) Math.round(Math.log(n) / Math.log(2));
}
public static void main(String[] args) {
System.loadLibrary("cvc4jni");
ExprManager em = new ExprManager();
SmtEngine smt = new SmtEngine(em);
smt.setOption("produce-models", new SExpr(true)); // Produce Models
smt.setOption("output-language", new SExpr("smtlib")); // output-language
smt.setLogic("QF_AUFBV"); // Set the logic
// Consider the following code (where size is some previously defined constant):
//
//
// Assert (current_array[0] > 0);
// for (unsigned i = 1; i < k; ++i) {
// current_array[i] = 2 * current_array[i - 1];
// Assert (current_array[i-1] < current_array[i]);
// }
//
// We want to check whether the assertion in the body of the for loop holds
// throughout the loop.
// Setting up the problem parameters
int k = 4; // number of unrollings (should be a power of 2)
int index_size = log2(k); // size of the index
// Types
Type elementType = em.mkBitVectorType(32);
Type indexType = em.mkBitVectorType(index_size);
Type arrayType = em.mkArrayType(indexType, elementType);
// Variables
Expr current_array = em.mkVar("current_array", arrayType);
// Making a bit-vector constant
Expr zero = em.mkConst(new BitVector(index_size, 0));
// Asserting that current_array[0] > 0
Expr current_array0 = em.mkExpr(Kind.SELECT, current_array, zero);
Expr current_array0_gt_0 = em.mkExpr(Kind.BITVECTOR_SGT, current_array0, em.mkConst(new BitVector(32, 0)));
smt.assertFormula(current_array0_gt_0);
// Building the assertions in the loop unrolling
Expr index = em.mkConst(new BitVector(index_size, 0));
Expr old_current = em.mkExpr(Kind.SELECT, current_array, index);
Expr two = em.mkConst(new BitVector(32, 2));
vectorExpr assertions = new vectorExpr(em);
for (int i = 1; i < k; ++i) {
index = em.mkConst(new BitVector(index_size, new edu.stanford.CVC4.Integer(i)));
Expr new_current = em.mkExpr(Kind.BITVECTOR_MULT, two, old_current);
// current[i] = 2 * current[i-1]
current_array = em.mkExpr(Kind.STORE, current_array, index, new_current);
// current[i-1] < current [i]
Expr current_slt_new_current = em.mkExpr(Kind.BITVECTOR_SLT, old_current, new_current);
assertions.add(current_slt_new_current);
old_current = em.mkExpr(Kind.SELECT, current_array, index);
}
Expr query = em.mkExpr(Kind.NOT, em.mkExpr(Kind.AND, assertions));
System.out.println("Asserting " + query + " to CVC4 ");
smt.assertFormula(query);
System.out.println("Expect sat. ");
System.out.println("CVC4: " + smt.checkSat(em.mkConst(true)));
// Getting the model
System.out.println("The satisfying model is: ");
System.out.println(" current_array = " + smt.getValue(current_array));
System.out.println(" current_array[0] = " + smt.getValue(current_array0));
}
}
|