1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
|
/********************* */
/*! \file FloatingPointArith.java
** \verbatim
** Top contributors (to current version):
** Andres Noetzli
** This file is part of the CVC4 project.
** Copyright (c) 2009-2020 by the authors listed in the file AUTHORS
** in the top-level source directory) and their institutional affiliations.
** All rights reserved. See the file COPYING in the top-level source
** directory for licensing information.\endverbatim
**
** \brief An example of solving floating-point problems with CVC4's Java API
**
** This example shows how to check whether CVC4 was built with floating-point
** support, how to create floating-point types, variables and expressions, and
** how to create rounding mode constants by solving toy problems. The example
** also shows making special values (such as NaN and +oo) and converting an
** IEEE 754-2008 bit-vector to a floating-point number.
**/
import edu.stanford.CVC4.*;
import java.util.Iterator;
public class FloatingPointArith {
public static void main(String[] args) {
System.loadLibrary("cvc4jni");
// Test whether CVC4 was built with floating-point support
if (!Configuration.isBuiltWithSymFPU()) {
System.out.println("CVC4 was built without floating-point support.");
System.out.println("Configure with --symfpu and rebuild CVC4 to run");
System.out.println("this example.");
System.exit(77);
}
ExprManager em = new ExprManager();
SmtEngine smt = new SmtEngine(em);
// Enable the model production
smt.setOption("produce-models", new SExpr(true));
// Make single precision floating-point variables
FloatingPointType fpt32 = em.mkFloatingPointType(8, 24);
Expr a = em.mkVar("a", fpt32);
Expr b = em.mkVar("b", fpt32);
Expr c = em.mkVar("c", fpt32);
Expr d = em.mkVar("d", fpt32);
Expr e = em.mkVar("e", fpt32);
// Assert that floating-point addition is not associative:
// (a + (b + c)) != ((a + b) + c)
Expr rm = em.mkConst(RoundingMode.roundNearestTiesToEven);
Expr lhs = em.mkExpr(Kind.FLOATINGPOINT_PLUS,
rm,
a,
em.mkExpr(Kind.FLOATINGPOINT_PLUS, rm, b, c));
Expr rhs = em.mkExpr(Kind.FLOATINGPOINT_PLUS,
rm,
em.mkExpr(Kind.FLOATINGPOINT_PLUS, rm, a, b),
c);
smt.assertFormula(em.mkExpr(Kind.NOT, em.mkExpr(Kind.EQUAL, a, b)));
Result r = smt.checkSat(); // result is sat
assert r.isSat() == Result.Sat.SAT;
System.out.println("a = " + smt.getValue(a));
System.out.println("b = " + smt.getValue(b));
System.out.println("c = " + smt.getValue(c));
// Now, let's restrict `a` to be either NaN or positive infinity
FloatingPointSize fps32 = new FloatingPointSize(8, 24);
Expr nan = em.mkConst(FloatingPoint.makeNaN(fps32));
Expr inf = em.mkConst(FloatingPoint.makeInf(fps32, /* sign */ true));
smt.assertFormula(em.mkExpr(
Kind.OR, em.mkExpr(Kind.EQUAL, a, inf), em.mkExpr(Kind.EQUAL, a, nan)));
r = smt.checkSat(); // result is sat
assert r.isSat() == Result.Sat.SAT;
System.out.println("a = " + smt.getValue(a));
System.out.println("b = " + smt.getValue(b));
System.out.println("c = " + smt.getValue(c));
// And now for something completely different. Let's try to find a (normal)
// floating-point number that rounds to different integer values for
// different rounding modes.
Expr rtp = em.mkConst(RoundingMode.roundTowardPositive);
Expr rtn = em.mkConst(RoundingMode.roundTowardNegative);
Expr op = em.mkConst(new FloatingPointToSBV(16)); // (_ fp.to_sbv 16)
lhs = em.mkExpr(op, rtp, d);
rhs = em.mkExpr(op, rtn, d);
smt.assertFormula(em.mkExpr(Kind.FLOATINGPOINT_ISN, d));
smt.assertFormula(em.mkExpr(Kind.NOT, em.mkExpr(Kind.EQUAL, lhs, rhs)));
r = smt.checkSat(); // result is sat
assert r.isSat() == Result.Sat.SAT;
// Convert the result to a rational and print it
Expr val = smt.getValue(d);
Rational realVal =
val.getConstFloatingPoint().convertToRationalTotal(new Rational(0));
System.out.println("d = " + val + " = " + realVal);
System.out.println("((_ fp.to_sbv 16) RTP d) = " + smt.getValue(lhs));
System.out.println("((_ fp.to_sbv 16) RTN d) = " + smt.getValue(rhs));
// For our final trick, let's try to find a floating-point number between
// positive zero and the smallest positive floating-point number
Expr zero = em.mkConst(FloatingPoint.makeZero(fps32, /* sign */ true));
Expr smallest =
em.mkConst(new FloatingPoint(8, 24, new BitVector(32, 0b001)));
smt.assertFormula(em.mkExpr(Kind.AND,
em.mkExpr(Kind.FLOATINGPOINT_LT, zero, e),
em.mkExpr(Kind.FLOATINGPOINT_LT, e, smallest)));
r = smt.checkSat(); // result is unsat
assert r.isSat() == Result.Sat.UNSAT;
}
}
|