1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
Quickstart Guide
================
First, create a cvc5 :cpp:class:`TermManager <cvc5::TermManager>` instance:
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-0 start
:end-before: docs-cpp-quickstart-0 end
Then, create a cvc5 :cpp:class:`Solver <cvc5::Solver>` instance:
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-1 start
:end-before: docs-cpp-quickstart-1 end
We will ask the solver to produce models and unsat cores in the following,
and for this we have to enable the following options.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-2 start
:end-before: docs-cpp-quickstart-2 end
Next we set the logic.
The simplest way to set a logic for the solver is to choose "ALL".
This enables all logics in the solver.
Alternatively, ``"QF_ALL"`` enables all logics without quantifiers.
To optimize the solver's behavior for a more specific logic,
use the logic name, e.g. ``"QF_BV"`` or ``"QF_AUFBV"``.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-3 start
:end-before: docs-cpp-quickstart-3 end
In the following, we will define constraints of reals and integers.
For this, we first query the solver for the corresponding sorts.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-4 start
:end-before: docs-cpp-quickstart-4 end
Now, we create two constants ``x`` and ``y`` of sort ``Real``,
and two constants ``a`` and ``b`` of sort ``Integer``.
Notice that these are *symbolic* constants, but not actual values.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-5 start
:end-before: docs-cpp-quickstart-5 end
We define the following constraints regarding ``x`` and ``y``:
.. math::
(0 < x) \wedge (0 < y) \wedge (x + y < 1) \wedge (x \leq y)
We construct the required terms and assert them as follows:
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-6 start
:end-before: docs-cpp-quickstart-6 end
Now we check if the asserted formula is satisfiable, that is, we check if
there exist values of sort ``Real`` for ``x`` and ``y`` that satisfy all
the constraints.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-7 start
:end-before: docs-cpp-quickstart-7 end
The result we get from this satisfiability check is either ``sat``, ``unsat``
or ``unknown``.
It's status can be queried via
:cpp:func:`cvc5::Result::isSat`,
:cpp:func:`cvc5::Result::isUnsat` and
:cpp:func:`cvc5::Result::isSatUnknown`.
Alternatively, it can also be printed.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-8 start
:end-before: docs-cpp-quickstart-8 end
This will print:
.. code:: text
expected: sat
result: sat
Now, we query the solver for the values for ``x`` and ``y`` that satisfy
the constraints.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-9 start
:end-before: docs-cpp-quickstart-9 end
It is also possible to get values for terms that do not appear in the original
formula.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-10 start
:end-before: docs-cpp-quickstart-10 end
We can retrieve the string representation of these values as follows.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-11 start
:end-before: docs-cpp-quickstart-11 end
This will print the following:
.. code:: text
value for x: 1/6
value for y: 1/6
value for x - y: 0.0
We can convert these values to C++ types.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-12 start
:end-before: docs-cpp-quickstart-12 end
Another way to independently compute the value of ``x - y`` would be to
perform the (rational) arithmetic manually.
However, for more complex terms, it is easier to let the solver do the
evaluation.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-13 start
:end-before: docs-cpp-quickstart-13 end
This will print:
.. code:: text
computed correctly
Next, we will check satisfiability of the same formula,
only this time over integer variables ``a`` and ``b``.
For this, we first reset the assertions added to the solver.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-14 start
:end-before: docs-cpp-quickstart-14 end
Next, we assert the same assertions as above, but with integers.
This time, we inline the construction of terms
to the assertion command.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-15 start
:end-before: docs-cpp-quickstart-15 end
Now, we check whether the revised assertion is satisfiable.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-16 start
:end-before: docs-cpp-quickstart-16 end
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-17 start
:end-before: docs-cpp-quickstart-17 end
This time the asserted formula is unsatisfiable:
.. code:: text
expected: unsat
result: unsat
We can query the solver for an unsatisfiable core, that is, a subset
of the assertions that is already unsatisfiable.
.. literalinclude:: ../../../examples/api/cpp/quickstart.cpp
:language: cpp
:dedent: 2
:start-after: docs-cpp-quickstart-18 start
:end-before: docs-cpp-quickstart-18 end
This will print:
.. code:: text
unsat core size: 3
unsat core:
(< 0 a)
(< 0 b)
(< (+ a b) 1)
Example
-------
.. api-examples::
<examples>/api/cpp/quickstart.cpp
<examples>/api/c/quickstart.c
<examples>/api/java/QuickStart.java
<pythonicapi>/test/pgms/example_quickstart.py
<examples>/api/python/quickstart.py
<examples>/api/smtlib/quickstart.smt2
|