File: bitvectors.c

package info (click to toggle)
cvc5 1.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 87,260 kB
  • sloc: cpp: 383,850; java: 12,207; python: 12,090; sh: 5,679; ansic: 4,729; lisp: 763; perl: 208; makefile: 38
file content (175 lines) | stat: -rw-r--r-- 5,926 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/******************************************************************************
 * Top contributors (to current version):
 *   Aina Niemetz, Liana Hadarean, Haniel Barbosa
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * A simple demonstration of the solving capabilities of the cvc5
 * bit-vector solver.
 *
 */

#include <cvc5/c/cvc5.h>
#include <stdio.h>

int main()
{
  Cvc5TermManager* tm = cvc5_term_manager_new();
  Cvc5* slv = cvc5_new(tm);
  cvc5_set_logic(slv, "QF_BV");

  // The following example has been adapted from the book A Hacker's Delight by
  // Henry S. Warren.
  //
  // Given a variable x that can only have two values, a or b. We want to
  // assign to x a value other than the current one. The straightforward code
  // to do that is:
  //
  //(0) if (x == a ) x = b;
  //    else x = a;
  //
  // Two more efficient yet equivalent methods are:
  //
  //(1) x = a ⊕ b ⊕ x;
  //
  //(2) x = a + b - x;
  //
  // We will use cvc5 to prove that the three pieces of code above are all
  // equivalent by encoding the problem in the bit-vector theory.

  // Creating a bit-vector type of width 32
  Cvc5Sort bv32 = cvc5_mk_bv_sort(tm, 32);

  // Variables
  Cvc5Term x = cvc5_mk_const(tm, bv32, "x");
  Cvc5Term a = cvc5_mk_const(tm, bv32, "a");
  Cvc5Term b = cvc5_mk_const(tm, bv32, "b");

  Cvc5Term args2[2];

  // First encode the assumption that x must be equal to a or b
  args2[0] = x;
  args2[1] = a;
  Cvc5Term x_eq_a = cvc5_mk_term(tm, CVC5_KIND_EQUAL, 2, args2);
  args2[0] = x;
  args2[1] = b;
  Cvc5Term x_eq_b = cvc5_mk_term(tm, CVC5_KIND_EQUAL, 2, args2);
  args2[0] = x_eq_a;
  args2[1] = x_eq_b;
  Cvc5Term assumption = cvc5_mk_term(tm, CVC5_KIND_OR, 2, args2);

  // Assert the assumption
  cvc5_assert_formula(slv, assumption);

  // Introduce a new variable for the new value of x after assignment.
  // x after executing code (0)
  Cvc5Term new_x = cvc5_mk_const(tm, bv32, "new_x");
  // x after executing code (1) or (2)
  Cvc5Term new_x_ = cvc5_mk_const(tm, bv32, "new_x_");

  // Encoding code (0)
  // new_x = x == a ? b : a;
  Cvc5Term args3[3] = {x_eq_a, b, a};
  Cvc5Term ite = cvc5_mk_term(tm, CVC5_KIND_ITE, 3, args3);
  args2[0] = new_x;
  args2[1] = ite;
  Cvc5Term assignment0 = cvc5_mk_term(tm, CVC5_KIND_EQUAL, 2, args2);

  // Assert the encoding of code (0)
  printf("Asserting %s to cvc5\n", cvc5_term_to_string(assignment0));
  cvc5_assert_formula(slv, assignment0);
  printf("Pushing a new context.\n");
  cvc5_push(slv, 1);

  // Encoding code (1)
  // new_x_ = a xor b xor x
  args3[0] = a;
  args3[1] = b;
  args3[2] = x;
  Cvc5Term a_xor_b_xor_x = cvc5_mk_term(tm, CVC5_KIND_BITVECTOR_XOR, 3, args3);
  args2[0] = new_x_;
  args2[1] = a_xor_b_xor_x;
  Cvc5Term assignment1 = cvc5_mk_term(tm, CVC5_KIND_EQUAL, 2, args2);

  // Assert encoding to cvc5 in current context;
  printf("Asserting %s to cvc5\n", cvc5_term_to_string(assignment1));
  cvc5_assert_formula(slv, assignment1);
  args2[0] = new_x;
  args2[1] = new_x_;
  Cvc5Term new_x_eq_new_x_ = cvc5_mk_term(tm, CVC5_KIND_EQUAL, 2, args2);

  Cvc5Term args1[1] = {new_x_eq_new_x_};
  Cvc5Term not_new_x_eq_new_x_ = cvc5_mk_term(tm, CVC5_KIND_NOT, 1, args1);
  printf(" Check sat assuming: %s\n", cvc5_term_to_string(not_new_x_eq_new_x_));
  printf(" Expect UNSAT.\n");

  Cvc5Term assumptions[1] = {not_new_x_eq_new_x_};
  printf(" cvc5: %s\n",
         cvc5_result_to_string(cvc5_check_sat_assuming(slv, 1, assumptions)));
  printf(" Popping context.\n");
  cvc5_pop(slv, 1);

  // Encoding code (2)
  // new_x_ = a + b - x
  args2[0] = a;
  args2[1] = b;
  Cvc5Term a_plus_b = cvc5_mk_term(tm, CVC5_KIND_BITVECTOR_ADD, 2, args2);
  args2[0] = a_plus_b;
  args2[1] = x;
  Cvc5Term a_plus_b_minus_x =
      cvc5_mk_term(tm, CVC5_KIND_BITVECTOR_SUB, 2, args2);
  args2[0] = new_x_;
  args2[1] = a_plus_b_minus_x;
  Cvc5Term assignment2 = cvc5_mk_term(tm, CVC5_KIND_EQUAL, 2, args2);

  // Assert encoding to cvc5 in current context;
  printf("Asserting %s to cvc5\n", cvc5_term_to_string(assignment2));
  cvc5_assert_formula(slv, assignment2);

  printf(" Check sat assuming: %s\n", cvc5_term_to_string(not_new_x_eq_new_x_));
  printf(" Expect UNSAT.\n");
  printf(" cvc5: %s\n",
         cvc5_result_to_string(cvc5_check_sat_assuming(slv, 1, assumptions)));

  args2[0] = x;
  args2[1] = x;
  Cvc5Term x_neq_x = cvc5_mk_term(tm, CVC5_KIND_DISTINCT, 2, args2);

  args2[0] = new_x_eq_new_x_;
  args2[1] = x_neq_x;
  Cvc5Term query = cvc5_mk_term(tm, CVC5_KIND_AND, 2, args2);
  args1[0] = query;
  Cvc5Term not_query = cvc5_mk_term(tm, CVC5_KIND_NOT, 1, args1);
  printf(" Check sat assuming: %s\n", cvc5_term_to_string(not_query));
  printf(" Expect SAT.\n");
  assumptions[0] = not_query;
  printf(" cvc5: %s\n",
         cvc5_result_to_string(cvc5_check_sat_assuming(slv, 1, assumptions)));

  // Assert that a is odd
  uint32_t idxs[2] = {0, 0};
  Cvc5Op extract_op = cvc5_mk_op(tm, CVC5_KIND_BITVECTOR_EXTRACT, 2, idxs);
  args1[0] = a;
  Cvc5Term lsb_of_a = cvc5_mk_term_from_op(tm, extract_op, 1, args1);
  printf("Sort of %s is %s\n",
         cvc5_term_to_string(lsb_of_a),
         cvc5_sort_to_string(cvc5_term_get_sort(lsb_of_a)));
  args2[0] = lsb_of_a;
  args2[1] = cvc5_mk_bv_uint64(tm, 1, 1);
  Cvc5Term a_odd = cvc5_mk_term(tm, CVC5_KIND_EQUAL, 2, args2);
  printf("Assert %s\n", cvc5_term_to_string(a_odd));
  printf("Check satisfiability.\n");
  cvc5_assert_formula(slv, a_odd);
  printf(" Expect sat.\n");
  printf(" cvc5: %s\n", cvc5_result_to_string(cvc5_check_sat(slv)));

  cvc5_delete(slv);
  cvc5_term_manager_delete(tm);
  return 0;
}