1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/******************************************************************************
* Top contributors (to current version):
* Aina Niemetz, Andres Noetzli
*
* This file is part of the cvc5 project.
*
* Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
* in the top-level source directory and their institutional affiliations.
* All rights reserved. See the file COPYING in the top-level source
* directory for licensing information.
* ****************************************************************************
*
* An example of solving floating-point problems with cvc5's cpp API.
*
* This example shows to create floating-point types, variables and expressions,
* and how to create rounding mode constants by solving toy problems. The
* example also shows making special values (such as NaN and +oo) and converting
* an IEEE 754-2008 bit-vector to a floating-point number.
*/
#include <assert.h>
#include <cvc5/c/cvc5.h>
#include <stdio.h>
int main()
{
Cvc5TermManager* tm = cvc5_term_manager_new();
Cvc5* slv = cvc5_new(tm);
cvc5_set_option(slv, "incremental", "true");
cvc5_set_option(slv, "produce-models", "true");
// Make single precision floating-point variables
Cvc5Sort fp32 = cvc5_mk_fp_sort(tm, 8, 24);
Cvc5Term a = cvc5_mk_const(tm, fp32, "a");
Cvc5Term b = cvc5_mk_const(tm, fp32, "b");
Cvc5Term c = cvc5_mk_const(tm, fp32, "c");
Cvc5Term d = cvc5_mk_const(tm, fp32, "d");
Cvc5Term e = cvc5_mk_const(tm, fp32, "e");
// Rounding mode
Cvc5Term rm = cvc5_mk_rm(tm, CVC5_RM_ROUND_NEAREST_TIES_TO_EVEN);
printf("Show that fused multiplication and addition `(fp.fma RM a b c)`\n");
printf("is different from `(fp.add RM (fp.mul a b) c)`:\n");
cvc5_push(slv, 1);
Cvc5Term args4[4] = {rm, a, b, c};
Cvc5Term fma = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_FMA, 4, args4);
Cvc5Term args3[3] = {rm, a, b};
Cvc5Term mul = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_MULT, 3, args3);
args3[0] = rm;
args3[1] = mul;
args3[2] = c;
Cvc5Term add = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_ADD, 3, args3);
Cvc5Term args2[2] = {fma, add};
cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_DISTINCT, 2, args2));
Cvc5Result r = cvc5_check_sat(slv); // result is sat
assert(cvc5_result_is_sat(r));
printf("Expect sat: %s\n", cvc5_result_to_string(r));
printf("Value of `a`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, a)));
printf("Value of `b`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, b)));
printf("Value of `c`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, c)));
printf("Value of `(fp.fma RNE a b c)`: %s\n",
cvc5_term_to_string(cvc5_get_value(slv, fma)));
printf("Value of `(fp.add RNE (fp.mul a b) c)`: %s\n\n",
cvc5_term_to_string(cvc5_get_value(slv, add)));
cvc5_pop(slv, 1);
printf("Show that floating-point addition is not associative:\n");
printf("(a + (b + c)) != ((a + b) + c)\n");
cvc5_push(slv, 1);
args3[0] = rm;
args3[1] = b;
args3[2] = c;
Cvc5Term fp_add = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_ADD, 3, args3);
args3[0] = rm;
args3[1] = a;
args3[2] = fp_add;
Cvc5Term lhs = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_ADD, 3, args3);
args3[0] = rm;
args3[1] = a;
args3[2] = b;
cvc5_term_release(fp_add); // optional, not needed anymore so we can release
fp_add = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_ADD, 3, args3);
args3[0] = rm;
args3[1] = fp_add;
args3[2] = c;
Cvc5Term rhs = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_ADD, 3, args3);
args2[0] = lhs;
args2[1] = rhs;
cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_DISTINCT, 2, args2));
cvc5_result_release(r); // optional, not needed anymore so we can release
r = cvc5_check_sat(slv); // result is sat
assert(cvc5_result_is_sat(r));
printf("Expect sat: %s\n", cvc5_result_to_string(r));
printf("Value of `a`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, a)));
printf("Value of `b`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, b)));
printf("Value of `c`: %s\n\n", cvc5_term_to_string(cvc5_get_value(slv, c)));
printf("Now, restrict `a` to be either NaN or positive infinity:\n");
Cvc5Term nan = cvc5_mk_fp_nan(tm, 8, 24);
Cvc5Term inf = cvc5_mk_fp_pos_inf(tm, 8, 24);
args2[0] = a;
args2[1] = inf;
Cvc5Term eq1 = cvc5_mk_term(tm, CVC5_KIND_EQUAL, 2, args2);
args2[0] = a;
args2[1] = nan;
Cvc5Term eq2 = cvc5_mk_term(tm, CVC5_KIND_EQUAL, 2, args2);
args2[0] = eq1;
args2[1] = eq2;
cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_OR, 2, args2));
cvc5_result_release(r); // optional, not needed anymore so we can release
r = cvc5_check_sat(slv); // result is sat
assert(cvc5_result_is_sat(r));
printf("Expect sat: %s\n", cvc5_result_to_string(r));
printf("Value of `a`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, a)));
printf("Value of `b`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, b)));
printf("Value of `c`: %s\n\n", cvc5_term_to_string(cvc5_get_value(slv, c)));
cvc5_pop(slv, 1);
printf("Now, try to find a (normal) floating-point number that rounds\n");
printf("to different integer values for different rounding modes:\n");
cvc5_push(slv, 1);
Cvc5Term rtp = cvc5_mk_rm(tm, CVC5_RM_ROUND_TOWARD_POSITIVE);
Cvc5Term rtn = cvc5_mk_rm(tm, CVC5_RM_ROUND_TOWARD_NEGATIVE);
// (_ fp.to_ubv 16)
uint32_t idxs[1] = {16};
Cvc5Op op = cvc5_mk_op(tm, CVC5_KIND_FLOATINGPOINT_TO_UBV, 1, idxs);
args2[0] = rtp;
args2[1] = d;
cvc5_term_release(lhs); // optional, not needed anymore so we can release
lhs = cvc5_mk_term_from_op(tm, op, 2, args2);
args2[0] = rtn;
args2[1] = d;
cvc5_term_release(rhs); // optional, not needed anymore so we can release
rhs = cvc5_mk_term_from_op(tm, op, 2, args2);
Cvc5Term args1[1] = {d};
cvc5_assert_formula(
slv, cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_IS_NORMAL, 1, args1));
args2[0] = lhs;
args2[1] = rhs;
cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_DISTINCT, 2, args2));
cvc5_result_release(r); // optional, not needed anymore so we can release
r = cvc5_check_sat(slv); // result is sat
assert(cvc5_result_is_sat(r));
printf("Expect sat: %s\n\n", cvc5_result_to_string(r));
printf("Get value of `d` as floating-point, bit-vector and real:\n");
Cvc5Term val = cvc5_get_value(slv, d);
printf("Value of `d`: %s\n", cvc5_term_to_string(val));
printf("Value of `((_ fp.to_ubv 16) RTP d)`: %s\n",
cvc5_term_to_string(cvc5_get_value(slv, lhs)));
printf("Value of `((_ fp.to_ubv 16) RTN d)`: %s\n",
cvc5_term_to_string(cvc5_get_value(slv, rhs)));
args1[0] = val;
Cvc5Term real_val = cvc5_get_value(
slv, cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_TO_REAL, 1, args1));
printf("Value of `(fp.to_real d)` %s\n\n", cvc5_term_to_string(real_val));
cvc5_pop(slv, 1);
printf("Finally, try to find a floating-point number between positive\n");
printf("zero and the smallest positive floating-point number:\n");
Cvc5Term zero = cvc5_mk_fp_pos_zero(tm, 8, 24);
Cvc5Term smallest = cvc5_mk_fp(tm, 8, 24, cvc5_mk_bv_uint64(tm, 32, 1));
args2[0] = zero;
args2[1] = e;
cvc5_term_release(lhs); // optional, not needed anymore so we can release
lhs = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_LT, 2, args2);
args2[0] = e;
args2[1] = smallest;
cvc5_term_release(rhs); // optional, not needed anymore so we can release
rhs = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_LT, 2, args2);
args2[0] = lhs;
args2[1] = rhs;
cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_AND, 2, args2));
cvc5_result_release(r); // optional, not needed anymore so we can release
r = cvc5_check_sat(slv); // result is unsat
assert(cvc5_result_is_unsat(r));
printf("Expect unsat: %s\n", cvc5_result_to_string(r));
cvc5_delete(slv);
cvc5_term_manager_delete(tm);
return 0;
}
|