File: floating_point_arith.c

package info (click to toggle)
cvc5 1.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 87,260 kB
  • sloc: cpp: 383,850; java: 12,207; python: 12,090; sh: 5,679; ansic: 4,729; lisp: 763; perl: 208; makefile: 38
file content (194 lines) | stat: -rw-r--r-- 7,855 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/******************************************************************************
 * Top contributors (to current version):
 *   Aina Niemetz, Andres Noetzli
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * An example of solving floating-point problems with cvc5's cpp API.
 *
 * This example shows to create floating-point types, variables and expressions,
 * and how to create rounding mode constants by solving toy problems. The
 * example also shows making special values (such as NaN and +oo) and converting
 * an IEEE 754-2008 bit-vector to a floating-point number.
 */

#include <assert.h>
#include <cvc5/c/cvc5.h>
#include <stdio.h>

int main()
{
  Cvc5TermManager* tm = cvc5_term_manager_new();
  Cvc5* slv = cvc5_new(tm);
  cvc5_set_option(slv, "incremental", "true");
  cvc5_set_option(slv, "produce-models", "true");

  // Make single precision floating-point variables
  Cvc5Sort fp32 = cvc5_mk_fp_sort(tm, 8, 24);
  Cvc5Term a = cvc5_mk_const(tm, fp32, "a");
  Cvc5Term b = cvc5_mk_const(tm, fp32, "b");
  Cvc5Term c = cvc5_mk_const(tm, fp32, "c");
  Cvc5Term d = cvc5_mk_const(tm, fp32, "d");
  Cvc5Term e = cvc5_mk_const(tm, fp32, "e");

  // Rounding mode
  Cvc5Term rm = cvc5_mk_rm(tm, CVC5_RM_ROUND_NEAREST_TIES_TO_EVEN);

  printf("Show that fused multiplication and addition `(fp.fma RM a b c)`\n");
  printf("is different from `(fp.add RM (fp.mul a b) c)`:\n");
  cvc5_push(slv, 1);

  Cvc5Term args4[4] = {rm, a, b, c};
  Cvc5Term fma = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_FMA, 4, args4);
  Cvc5Term args3[3] = {rm, a, b};
  Cvc5Term mul = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_MULT, 3, args3);
  args3[0] = rm;
  args3[1] = mul;
  args3[2] = c;
  Cvc5Term add = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_ADD, 3, args3);
  Cvc5Term args2[2] = {fma, add};
  cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_DISTINCT, 2, args2));

  Cvc5Result r = cvc5_check_sat(slv);  // result is sat
  assert(cvc5_result_is_sat(r));
  printf("Expect sat: %s\n", cvc5_result_to_string(r));
  printf("Value of `a`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, a)));
  printf("Value of `b`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, b)));
  printf("Value of `c`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, c)));
  printf("Value of `(fp.fma RNE a b c)`: %s\n",
         cvc5_term_to_string(cvc5_get_value(slv, fma)));
  printf("Value of `(fp.add RNE (fp.mul a b) c)`: %s\n\n",
         cvc5_term_to_string(cvc5_get_value(slv, add)));
  cvc5_pop(slv, 1);

  printf("Show that floating-point addition is not associative:\n");
  printf("(a + (b + c)) != ((a + b) + c)\n");
  cvc5_push(slv, 1);

  args3[0] = rm;
  args3[1] = b;
  args3[2] = c;
  Cvc5Term fp_add = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_ADD, 3, args3);
  args3[0] = rm;
  args3[1] = a;
  args3[2] = fp_add;
  Cvc5Term lhs = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_ADD, 3, args3);
  args3[0] = rm;
  args3[1] = a;
  args3[2] = b;
  cvc5_term_release(fp_add);  // optional, not needed anymore so we can release
  fp_add = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_ADD, 3, args3);
  args3[0] = rm;
  args3[1] = fp_add;
  args3[2] = c;
  Cvc5Term rhs = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_ADD, 3, args3);

  args2[0] = lhs;
  args2[1] = rhs;
  cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_DISTINCT, 2, args2));

  cvc5_result_release(r);   // optional, not needed anymore so we can release
  r = cvc5_check_sat(slv);  // result is sat
  assert(cvc5_result_is_sat(r));
  printf("Expect sat: %s\n", cvc5_result_to_string(r));
  printf("Value of `a`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, a)));
  printf("Value of `b`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, b)));
  printf("Value of `c`: %s\n\n", cvc5_term_to_string(cvc5_get_value(slv, c)));

  printf("Now, restrict `a` to be either NaN or positive infinity:\n");
  Cvc5Term nan = cvc5_mk_fp_nan(tm, 8, 24);
  Cvc5Term inf = cvc5_mk_fp_pos_inf(tm, 8, 24);
  args2[0] = a;
  args2[1] = inf;
  Cvc5Term eq1 = cvc5_mk_term(tm, CVC5_KIND_EQUAL, 2, args2);
  args2[0] = a;
  args2[1] = nan;
  Cvc5Term eq2 = cvc5_mk_term(tm, CVC5_KIND_EQUAL, 2, args2);
  args2[0] = eq1;
  args2[1] = eq2;
  cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_OR, 2, args2));

  cvc5_result_release(r);   // optional, not needed anymore so we can release
  r = cvc5_check_sat(slv);  // result is sat
  assert(cvc5_result_is_sat(r));
  printf("Expect sat: %s\n", cvc5_result_to_string(r));
  printf("Value of `a`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, a)));
  printf("Value of `b`: %s\n", cvc5_term_to_string(cvc5_get_value(slv, b)));
  printf("Value of `c`: %s\n\n", cvc5_term_to_string(cvc5_get_value(slv, c)));
  cvc5_pop(slv, 1);

  printf("Now, try to find a (normal) floating-point number that rounds\n");
  printf("to different integer values for different rounding modes:\n");
  cvc5_push(slv, 1);

  Cvc5Term rtp = cvc5_mk_rm(tm, CVC5_RM_ROUND_TOWARD_POSITIVE);
  Cvc5Term rtn = cvc5_mk_rm(tm, CVC5_RM_ROUND_TOWARD_NEGATIVE);
  // (_ fp.to_ubv 16)
  uint32_t idxs[1] = {16};
  Cvc5Op op = cvc5_mk_op(tm, CVC5_KIND_FLOATINGPOINT_TO_UBV, 1, idxs);
  args2[0] = rtp;
  args2[1] = d;
  cvc5_term_release(lhs);  // optional, not needed anymore so we can release
  lhs = cvc5_mk_term_from_op(tm, op, 2, args2);
  args2[0] = rtn;
  args2[1] = d;
  cvc5_term_release(rhs);  // optional, not needed anymore so we can release
  rhs = cvc5_mk_term_from_op(tm, op, 2, args2);
  Cvc5Term args1[1] = {d};
  cvc5_assert_formula(
      slv, cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_IS_NORMAL, 1, args1));
  args2[0] = lhs;
  args2[1] = rhs;
  cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_DISTINCT, 2, args2));

  cvc5_result_release(r);   // optional, not needed anymore so we can release
  r = cvc5_check_sat(slv);  // result is sat
  assert(cvc5_result_is_sat(r));
  printf("Expect sat: %s\n\n", cvc5_result_to_string(r));

  printf("Get value of `d` as floating-point, bit-vector and real:\n");

  Cvc5Term val = cvc5_get_value(slv, d);
  printf("Value of `d`: %s\n", cvc5_term_to_string(val));
  printf("Value of `((_ fp.to_ubv 16) RTP d)`: %s\n",
         cvc5_term_to_string(cvc5_get_value(slv, lhs)));
  printf("Value of `((_ fp.to_ubv 16) RTN d)`: %s\n",
         cvc5_term_to_string(cvc5_get_value(slv, rhs)));
  args1[0] = val;
  Cvc5Term real_val = cvc5_get_value(
      slv, cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_TO_REAL, 1, args1));
  printf("Value of `(fp.to_real d)` %s\n\n", cvc5_term_to_string(real_val));
  cvc5_pop(slv, 1);

  printf("Finally, try to find a floating-point number between positive\n");
  printf("zero and the smallest positive floating-point number:\n");
  Cvc5Term zero = cvc5_mk_fp_pos_zero(tm, 8, 24);
  Cvc5Term smallest = cvc5_mk_fp(tm, 8, 24, cvc5_mk_bv_uint64(tm, 32, 1));

  args2[0] = zero;
  args2[1] = e;
  cvc5_term_release(lhs);  // optional, not needed anymore so we can release
  lhs = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_LT, 2, args2);
  args2[0] = e;
  args2[1] = smallest;
  cvc5_term_release(rhs);  // optional, not needed anymore so we can release
  rhs = cvc5_mk_term(tm, CVC5_KIND_FLOATINGPOINT_LT, 2, args2);
  args2[0] = lhs;
  args2[1] = rhs;
  cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_AND, 2, args2));

  cvc5_result_release(r);   // optional, not needed anymore so we can release
  r = cvc5_check_sat(slv);  // result is unsat
  assert(cvc5_result_is_unsat(r));
  printf("Expect unsat: %s\n", cvc5_result_to_string(r));

  cvc5_delete(slv);
  cvc5_term_manager_delete(tm);
  return 0;
}